Composite Hurwitz Rings Satisfying the Ascending Chain Condition on Principal Ideals

Jung Wook Lim
Department of Mathematics, Kyungpook National University, Daegu, 41566, Republic of Korea
e-mail: jwlim@knu.ac.kr
Dong Yeol OH^{*}
Department of Mathematics Education, Chosun University, Gwangju, 61452, Republic of Korea
e-mail: dyoh@chosun.ac.kr

Abstract. Let $D \subseteq E$ be an extension of integral domains with characteristic zero, I be a nonzero proper ideal of D and let $H(D, E)$ and $H(D, I)$ (resp., $h(D, E)$ and $h(D, I)$) be composite Hurwitz series rings (resp., composite Hurwitz polynomial rings). In this paper, we show that $H(D, E)$ satisfies the ascending chain condition on principal ideals if and only if $h(D, E)$ satisfies the ascending chain condition on principal ideals, if and only if $\bigcap_{n \geq 1} a_{1} \cdots a_{n} E=(0)$ for each infinite sequence $\left(a_{n}\right)_{n \geq 1}$ consisting of nonzero nonunits of D. We also prove that $H(D, I)$ satisfies the ascending chain condition on principal ideals if and only if $h(D, I)$ satisfies the ascending chain condition on principal ideals, if and only if D satisfies the ascending chain condition on principal ideals.

1. Introduction

1.1 Composite Hurwitz Rings

Let R be a commutative ring with identity and let $H(R)$ be the set of formal expressions of the type $f=\sum_{i=0}^{\infty} a_{i} X^{i}$, where $a_{i} \in R$. Define addition and ${ }^{*}$

[^0]product on $H(R)$ as follows: for $f=\sum_{i=0}^{\infty} a_{i} X^{i}, g=\sum_{i=0}^{\infty} b_{i} X^{i} \in H(R)$,
$$
f+g=\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) X^{i} \text { and } f * g=\sum_{n=0}^{\infty} c_{n} X^{n}
$$
where $c_{n}=\sum_{i=0}^{n}\binom{n}{i} a_{i} b_{n-i}$. Then $H(R)$ becomes a commutative ring with identity containing R under these two operations, i.e., $H(R)=(R \llbracket X \rrbracket,+, *)$. We call it the Hurwitz series ring over R. The Hurwitz polynomial ring $h(R)$ is defined as the same way, i.e., $h(R)$ is the set of formal expression of the type $f=\sum_{i=0}^{n} a_{i} X^{i}$, where $a_{i} \in R$ with the usual addition and $*$-product. Note that $(h(R),+, *)$ is also a commutative ring with identity containing R. In order to prevent the confusion, for $n \geq 1$, we denote the nth Hurwitz power of f by $f^{(n)}$, where f is either a Hurwitz series or a Hurwitz polynomial. Also, for a Hurwitz series $f=\sum_{i=0}^{\infty} a_{i} X^{i} \in H(R)$, the order of f is the smallest nonnegative ingeger m such that $a_{m} \neq 0$ and is denoted by ord (f). For an $f=\sum_{i=0}^{\infty} a_{i} X^{i} \in H(R)$, we mean by the support of f, denoted by $\operatorname{supp}(f)$, the set of nonnegative integers n such that $a_{n} \neq 0$. Also, for an $f \in H(R)$ and a nonnegative integer $n, f(n)$ stands for the coefficient of X^{n} in f.

Let $D \subseteq E$ be an extension of commutative rings with identity and set $H(D, E):=\{f \in H(E) \mid f(0) \in D\}$ and $h(D, E):=\{f \in h(E) \mid f(0) \in D\}$. Then $H(D) \subseteq H(D, E) \subseteq H(E)$ and $h(D) \subseteq h(D, E) \subseteq h(E)$. The rings $H(D, E)$ and $h(D, E)$ are called the composite Hurwitz series ring and the composite Hurwitz polynomial ring, respectively. In other words, $H(D, E)=(D+X E \llbracket X \rrbracket,+, *)$ and $h(D, E)=(D+X E[X],+, *)$.

Let I be a nonzero proper ideal of D and set $H(D, I)=\{f \in H(D) \mid f(n) \in I$ for all $n \geq 1\}$ (resp., $h(D, I)=\{f \in h(D) \mid f(n) \in I$ for all $n \geq 1\}$). Then $D \subsetneq H(D, I) \subsetneq H(D)$ and $D \subsetneq h(D, I) \subsetneq h(D)$.

1.2 Ascending Chain Condition on Principal Ideals

As a particular case of Noetherian rings, a ring satisfying the ascending chain condition on principal ideals has been studied by many mathematicians. Let R be a commutative ring with identity. Recall that R satisfies the ascending chain condition on principal ideals (ACCP) if there does not exist an infinite strictly ascending chain of principal ideals of R. It was shown that if R is an integral domain, then R satisfies ACCP if and only if $\bigcap_{n>1} a_{1} \cdots a_{n} R=(0)$ for each infinite sequence $\left(a_{n}\right)_{n \geq 1}$ of nonzero nonunits of R [2, Remark 1.1]. In [2, Proposition 1.2 and Remark 1.4] (or [5, Theorem 3.4] and [6, Corollary 1.5(2)]), the authors proved that if $D \subseteq E$ is an extension of integral domains, then $D+X E \llbracket X \rrbracket$ satisfies ACCP if and only if $D+X E[X]$ satisfies ACCP, if and only if $\bigcap_{n>1} a_{1} \cdots a_{n} E=(0)$ for each infinite sequence $\left(a_{n}\right)_{n \geq 1}$ consisting of nonzero nonunits of D. Also, it was shown that if D is an integral domain and I is a nonzero proper ideal of D, then $D+X I \llbracket X \rrbracket$ satisfies ACCP if and only if $D+X I[X]$ satisfies ACCP, if and only if D satisfies ACCP [3, Proposition 4.6] (or [5, Theorem 3.7] and [6, Corollary 1.5(3)]).

In this article, we study when composite Hurwitz series rings $H(D, E)$ and $H(D, I)$ and composite Hurwitz polynomial rings $h(D, E)$ and $h(D, I)$ satisfy

ACCP, where $D \subseteq E$ is an extension of integral domains with characteristic zero and I is a nonzero proper ideal of D. More precisely, we show that $H(D, E)$ satisfies ACCP if and only if $h(D, E)$ satisfies ACCP, if and only if $\bigcap_{n \geq 1} a_{1} \cdots a_{n} E=(0)$ for each infinite sequence $\left(a_{n}\right)_{n \geq 1}$ consisting of nonzero nonunits of D (Theorem 2.4). We also prove that $H(D, I)$ satisfies ACCP if and only if $h(D, I)$ satisfies ACCP, if and only if D satisfies ACCP (Theorem 3.4).

2. Composite Hurwitz Rings $H(D, E)$ and $h(D, E)$

In this section, we characterize when the composite Hurwitz series ring $H(D, E)$ and the composite Hurwitz polynomial ring $h(D, E)$ satisfy ACCP, where $D \subseteq E$ is an extension of integral domains with characteristic zero. We start with a simple result whose proof is straightforward.

Proposition 2.1. Let $D \subseteq E$ be an extension of commutative rings with identity. Then the following conditions are equivalent.
(1) $H(D, E)$ is an integral domain.
(2) $h(D, E)$ is an integral domain.
(3) $D \subseteq E$ is an extension of integral domains with characteristic zero.

We next characterize when a Hurwitz series (resp., Hurwitz polynomial) is a unit in the composite Hurwitz series ring $H(D, E)$ (resp., composite Hurwitz polynomial ring $h(D, E))$.

Lemma 2.2. Let $D \subseteq E$ be an extension of commutative rings with identity. Then the following assertions hold.
(1) A Hurwitz series $f \in H(D, E)$ is a unit if and only if $f(0)$ is a unit in D.
(2) A Hurwitz polynomial $f=\sum_{i=0}^{n} a_{i} X^{i} \in h(D, E)$ is a unit if and only if a_{0} is a unit in D and for each $i=1, \ldots, n, a_{i}$ is nilpotent or some power of a_{i} is with torsion.

Proof. (1) If f is a unit in $H(D, E)$, then $f * g=1$ for some $g \in H(D, E)$; so $f(0) g(0)=1$. Hence $f(0)$ is a unit in D. Conversely, if $f(0)$ is a unit in D, then $f(0)$ is a unit in E; so $f * g=1$ for some $g \in H(E)$ [4, Proposition 2.5]. Since $g(0)=\frac{1}{f(0)} \in D, g \in H(D, E)$. Thus f is a unit in $H(D, E)$.
(2) If f is a unit in $h(D, E)$, then $f * g=1$ for some $g \in h(D, E)$; so $a_{0} g(0)=1$. Hence a_{0} is a unit in D. Also, f is a unit in $h(E)$; so for each $i=1, \ldots, n, a_{i}$ is nilpotent or some power of a_{i} is with torsion [1, Theorem 3.1]. For the converse, assume that a_{0} is a unit in D and for each $i=1, \ldots, n, a_{i}$ is nilpotent or some power of a_{i} is with torsion. Then f is a unit in $h(E)$ [1, Theorem 3.1]; so $f * g=1$ for some $g \in h(E)$. Since a_{0} is a unit in $D, g(0)=\frac{1}{a_{0}} \in D$; so $g \in h(D, E)$. Thus f is a unit in $h(D, E)$.

To characterize when composite Hurwitz rings $H(D, E)$ and $h(D, E)$ satisfy ACCP, we need the following lemma.

Lemma 2.3. Let $D \subseteq E$ be an extension of integral domains with characteristic zero and let $\left(f_{n}\right)_{n \geq 1}$ be an infinite sequence of nonzero nonunits of $H(D, E)$ (resp., $h(D, E))$. If $\left(f_{n}\right)_{n \geq 1}$ has an infinite subsequence of series with positive order (resp., polynomials with positive degree), then $\bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * H(D, E)=(0)$ (resp., $\left.\bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * h(D, E)=(0)\right)$.
Proof. We first consider the composite Hurwitz series ring case. Let $\left(f_{n}\right)_{n \geq 1}$ be an infinite sequence of nonzero nonunits of $H(D, E)$ which has an infinite subsequence of series with positive order. If $g \in \bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * H(D, E)$, then for all $n \geq 1$, there exists an element $h_{n} \in H(D, E)$ such that $g=f_{1} * \cdots * f_{n} * h_{n}$. Note that by Proposition 2.1, $H(D, E)$ is an integral domain; so $\operatorname{ord}(g) \geq \operatorname{ord}\left(f_{1}\right)+\cdots+\operatorname{ord}\left(f_{n}\right)$ for all $n \geq 1$. Since $\operatorname{ord}\left(f_{i}\right)$ is positive for infinitely many $i, \operatorname{ord}(g)=\infty$. Hence $g=0$, which indicates that $\bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * H(D, E)=(0)$.

We next consider the composite Hurwitz polynomial ring case. Let $\left(f_{n}\right)_{n \geq 1}$ be an infinite sequence of nonzero nonunits of $h(D, E)$ which contains an infinite subsequence of polynomials with positive degree. Let $g \in \bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * h(D, E)$. Then for all $n \geq 1$, we can find a suitable element $h_{n} \in h(D, E)$ such that $g=$ $f_{1} * \cdots * f_{n} * h_{n}$. Note that by Proposition $2.1, h(D, E)$ is an integral domain; so $\operatorname{deg}(g) \geq \operatorname{deg}\left(f_{1}\right)+\cdots+\operatorname{deg}\left(f_{n}\right)$ for all $n \geq 1$. Since $\operatorname{deg}\left(f_{i}\right) \geq 1$ for infinitely many $i, \operatorname{deg}(g)=\infty$. Thus $g=0$, which shows that $\bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * h(D, E)=(0)$.

We now give the main result in this section.
Theorem 2.4. Let $D \subseteq E$ be an extension of integral domains with characteristic zero. Then the following statements are equivalent.
(1) $H(D, E)$ satisfies $A C C P$.
(2) $h(D, E)$ satisfies $A C C P$.
(3) $\bigcap_{n \geq 1} a_{1} \cdots a_{n} E=(0)$ for each infinite sequence $\left(a_{n}\right)_{n \geq 1}$ consisting of nonzero nonunits of D.
(4) $D+X E \llbracket X \rrbracket$ satisfies $A C C P$.
(5) $D+X E[X]$ satisfies $A C C P$.

Proof. (1) $\Rightarrow(2)$ Let $f_{1} * h(D, E) \subseteq f_{2} * h(D, E) \subseteq \cdots$ be an ascending chain of principal ideals of $h(D, E)$. Then for each $i \geq 1$, there exists an element $g_{i} \in h(D, E)$ such that $f_{i}=f_{i+1} * g_{i}$. Note that $f_{1} * H(D, E) \subseteq f_{2} * H(D, E) \subseteq \cdots$ is an ascending chain of principal ideals of $H(D, E)$. Since $H(D, E)$ satisfies ACCP, we can find a positive integer m such that $f_{k} * H(D, E)=f_{m} * H(D, E)$ for all $k \geq m$. Hence for all $k \geq m$, there exists a unit $h_{k} \in H(D, E)$ such that $f_{k}=f_{k+1} * h_{k}$. Since $H(D, E)$ is an integral domain, $h_{k}=g_{k}$ for all $k \geq m$. Note that $\left\{\operatorname{deg}\left(f_{i}\right)\right\}_{i \geq 1}$ is a monotone decreasing sequence of nonnegative integers; so it should be stationary. Let n be the smallest positive integer such that $\operatorname{deg}\left(f_{i}\right)=\operatorname{deg}\left(f_{n}\right)$ for all $i \geq n$.

Then $\operatorname{deg}\left(g_{i}\right)=0$ for all $i \geq n$, which means that g_{i} is a unit in D for all $i \geq n$. Thus $f_{i} * h(D, E)=f_{n} * h(D, E)$ for all $i \geq n$.
$(2) \Rightarrow(3)$ Let $\left(a_{n}\right)_{n \geq 1}$ be an infinite sequence consisting of nonzero nonunits of D and let $e \in \bigcap_{n \geq 1} a_{1} \cdots a_{n} E$. Note that by Lemma 2.2(2), $\left(a_{n}\right)_{n \geq 1}$ is an infinite sequence consisting of nonzero nonunits of $h(D, E)$. Since $h(D, E)$ satisfies ACCP, we have

$$
\begin{aligned}
e X & \in \bigcap_{n \geq 1} a_{1} \cdots a_{n} h(D, E) \\
& =(0)
\end{aligned}
$$

where the equality follows from [2, Remark 1.1]. Thus $e=0$, which indicates that $\bigcap_{n \geq 1} a_{1} \cdots a_{n} E=(0)$.
$(3) \Rightarrow(1)$ Let $\left(f_{n}\right)_{n \geq 1}$ be an infinite sequence of nonzero nonunits of $H(D, E)$. If $\left(f_{n}\right)_{n \geq 1}$ contains an infinite subsequence of series with positive order, then by Lemma $2.3, \bigcap_{n>1} f_{1} * \cdots * f_{n} * H(D, E)=(0)$; so we may assume that for all $n \geq 1$, the order of f_{n} is zero. Let $g \in \bigcap_{n>1} f_{1} * \cdots * f_{n} * H(D, E)$. Then for all $n \geq 1$, there exists an element $h_{n} \in H(D, E)$ such that $g=f_{1} * \cdots * f_{n} * h_{n}$. Since $H(D, E)$ is an integral domain, we have

$$
g(\operatorname{ord}(g))=f_{1}(0) \cdots f_{n}(0) h_{n}\left(\operatorname{ord}\left(h_{n}\right)\right)
$$

for all $n \geq 1$. Note that by Lemma 2.2(1), $\left\{f_{i}(0)\right\}_{i \geq 1}$ consists of nonzero nonunits in D. Hence we obtain

$$
\begin{aligned}
g(\operatorname{ord}(g)) & \in \bigcap_{n \geq 1} f_{1}(0) \cdots f_{n}(0) E \\
& =(0)
\end{aligned}
$$

by (3). Thus $g=0$, which implies that $H(D, E)$ satisfies ACCP [2, Remark 1.1].
$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ These equivalences were shown in [2, Proposition 1.2 and Remark 1.4] (or [5, Theorem 3.4] and [6, Corollary 1.5(2)]).

Remark 2.5. By replacing the order of a Hurwitz series with the degree of a Hurwitz polynomial, we can give a direct proof of $(3) \Rightarrow(2)$ in Theorem 2.4. For the sake of completeness, we insert it as follows. Let $\left(f_{n}\right)_{n \geq 1}$ be an infinite sequence of nonunits of $h(D, E)$. If $\left(f_{n}\right)_{n \geq 1}$ has an infinite subsequence of polynomials with positive degree, then by Lemma $2.3, \bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * h(D, E)=(0)$; so we may assume that f_{n} is a constant for all $n \geq 1$. Let $g \in \bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * h(D, E)$ and a be the coefficient of the largest degree term of g. Then for all $n \geq 1$, there exists an element $h_{n} \in h(D, E)$ such that $g=f_{1} * \cdots * f_{n} * h_{n}$; so for all $n \geq 1$, $a=f_{1} \cdots f_{n} b_{n}$, where b_{n} is the coefficient of the largest degree term of h_{n}. Hence $a \in \bigcap_{n \geq 1} f_{1} \cdots f_{n} E$. However $\bigcap_{n \geq 1} f_{1} \cdots f_{n} E=(0)$ by (3). Thus $g=0$, which implies that $h(D, E)$ satisfies ACCㄷ.

3. Composite Hurwitz Rings $H(D, I)$ and $h(D, I)$

In this section, we characterize when the composite Hurwitz series ring $H(D, I)$ and the composite Hurwitz polynomial ring $h(D, I)$ satisfy ACCP, where D is an integral domain with characteristic zero and I is a nonzero proper ideal of D. To do this, we study analogues of Proposition 2.1 and Lemmas 2.2 and 2.3.

Proposition 3.1. Let D be a commutative ring with identity and I a nonzero proper ideal of D. Then the following conditions are equivalent.
(1) $H(D, I)$ is an integral domain.
(2) $h(D, I)$ is an integral domain.
(3) D is both an integral domain and a torsion-free \mathbb{Z}-module.
(4) D is an integral domain with characteristic zero.

Lemma 3.2. Let D be a commutative ring with identity and I a nonzero proper ideal of D. Then the following assertions hold.
(1) A Hurwitz series $f \in H(D, I)$ is a unit if and only if $f(0)$ is a unit in D.
(2) A Hurwitz polynomial $f=\sum_{i=0}^{n} a_{i} X^{i} \in h(D, I)$ is a unit if and only if a_{0} is a unit in D and for each $i=1, \ldots, n, a_{i}$ is nilpotent or some power of a_{i} is with torsion.

Proof. (1) If f is a unit in $H(D, I)$, then there exists an element $g \in H(D, I)$ such that $f * g=1$; so $f(0) g(0)=1$. Hence $f(0)$ is a unit in D. Conversely, if $f(0)$ is a unit in D, then we can find a suitable element $g \in H(D)$ such that $f * g=1$ [4, Proposition 2.5]. Now we claim that $g \in H(D, I)$. If $g \in D$, then we have nothing to prove; so we assume that $g \notin D$. Let m be the smallest positive integer in $\operatorname{supp}(g)$. Then $0=(f * g)(m)=f(0) g(m)+f(m) g(0)$; so $g(m)=-\frac{f(m) g(0)}{f(0)} \in I$. Let $n \in \operatorname{supp}(g) \backslash\{0\}$ and suppose that $g(k) \in I$ for all $k \in$ $\operatorname{supp}(g)$ with $0<k<n$. Note that $0=(f * g)(n)=f(0) g(n)+\sum_{i=1}^{n}\binom{n}{i} f(i) g(n-i)$; so $g(n)=-\frac{\sum_{i=1}^{n}\binom{n}{i} f(i) g(n-i)}{f(0)} \in I$. Hence $g \in H(D, I)$, and thus f is a unit in $H(D, I)$.
(2) If f is a unit in $h(D, I)$, then $f * g=1$ for some $g \in h(D, I)$; so $a_{0} g(0)=1$. Hence a_{0} is a unit in D. Also, f is a unit in $h(D)$; so for each $i=1, \ldots, n, a_{i}$ is nilpotent or some power of a_{i} is with torsion [1, Theorem 3.1]. For the converse, assume that a_{0} is a unit in D and for each $i=1, \ldots, n, a_{i}$ is nilpotent or some power of a_{i} is with torsion. Then f is a unit in $h(D)$ [1, Theorem 3.1]; so $f * g=1$ for some $g \in h(D)$. Now, a simple modification of the proof of (1) shows that $g \in h(D, I)$. Thus f is a unit in $h(D, I)$.

Lemma 3.3. Let D be an integral domain with characteristic zero, I a nonzero proper ideal of D, and let $\left(f_{n}\right)_{n \geq 1}$ be an infinite sequence of nonzero nonunits
of $H(D, I)$ (resp., $h(D, I)$). If $\left(f_{n}\right)_{n \geq 1}$ has an infinite subsequence of series with positive order (resp., polynomials with positive degree), then $\bigcap_{n \geq 1} f_{1} * \cdots * f_{n} *$ $H(D, I)=(0)\left(\right.$ resp.,$\left.\bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * h(D, I)=(0)\right)$.
Proof. While the proof is similar to that of Lemma 2.3, we include it for the sake of completeness.

We first consider the composite Hurwitz series ring case. Let $\left(f_{n}\right)_{n \geq 1}$ be an infinite sequence of nonzero nonunits of $H(D, I)$ which has an infinite subsequence of series with positive order. If $g \in \bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * H(D, I)$, then for all $n \geq 1$, there exists an element $h_{n} \in H(D, I)$ such that $g=f_{1} * \cdots * f_{n} * h_{n}$. Note that by Proposition 3.1, $H(D, I)$ is an integral domain; so $\operatorname{ord}(g) \geq \operatorname{ord}\left(f_{1}\right)+\cdots+\operatorname{ord}\left(f_{n}\right)$ for all $n \geq 1$. Since $\operatorname{ord}\left(f_{i}\right)$ is positive for infinitely many i, $\operatorname{ord}(g)=\infty$. Hence $g=0$, which shows that $\bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * H(D, I)=(0)$.

We next consider the composite Hurwitz polynomial ring case. Let $\left(f_{n}\right)_{n \geq 1}$ be an infinite sequence of nonzero nonunits of $h(D, I)$ which contains an infinite subsequence of polynomials with positive degree. Let $g \in \bigcap_{n>1} f_{1} * \cdots * f_{n} * h(D, I)$. Then for all $n \geq 1$, we can find a suitable element $h_{n} \in h(D, I)$ such that $g=f_{1} *$ $\cdots * f_{n} * h_{n}$. Note that by Proposition 3.1, $h(D, I)$ is an integral domain; so $\operatorname{deg}(g) \geq$ $\operatorname{deg}\left(f_{1}\right)+\cdots+\operatorname{deg}\left(f_{n}\right)$ for all $n \geq 1$. Since f_{i} has the positive degree for infinitely many $i, \operatorname{deg}(g)=\infty$. Thus $g=0$, which indicates that $\bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * h(D, I)=$ (0).

We now give the main result in this section.
Theorem 3.4. Let D be an integral domain with characteristic zero and I a nonzero proper ideal of D. Then the following statements are equivalent.
(1) $H(D, I)$ satisfies $A C C P$.
(2) $h(D, I)$ satisfies $A C C P$.
(3) D satisfies ACCP.
(4) $D+X I \llbracket X \rrbracket$ satisfies $A C C P$.
(5) $D+X I[X]$ satisfies $A C C P$.
(6) $H(D)$ satisfies $A C C P$.
(7) $h(D)$ satisfies $A C C P$.
(8) $D \llbracket X \rrbracket$ satisfies $A C C P$.
(9) $D[X]$ satisfies $A C C P$.

Proof. (1) $\Rightarrow(2)$ Let $f_{1} * h(D, I) \subseteq f_{2} * h(D, I) \subseteq \cdots$ be an ascending chain of principal ideals of $h(D, I)$. Then for each $i \geq 1$, there exists an element $g_{i} \in h(D, I)$ such that $f_{i}=f_{i+1} * g_{i}$. Note that $f_{1} * H(D, I) \subseteq f_{2} * H(D, I) \subseteq \cdots$ is an ascending chain of principal ideals of $H(D, I)$. Since $H(D, I)$ satisfies ACCP, we can find a positive integer m such that $f_{k} * H(D, I)=f_{m} * H(D, I)$ for all $k \geq m$. Hence for
all $k \geq m$, there exists a unit $h_{k} \in H(D, I)$ such that $f_{k}=f_{k+1} * h_{k}$. Since $H(D, I)$ is an integral domain, $h_{k}=g_{k}$ for all $k \geq m$. Note that $\left\{\operatorname{deg}\left(f_{i}\right)\right\}_{i \geq 1}$ is a monotone decreasing sequence of nonnegative integers; so it should stop in finite steps. Let n be the smallest positive integer such that $\operatorname{deg}\left(f_{i}\right)=\operatorname{deg}\left(f_{n}\right)$ for all $i \geq n$. Then $\operatorname{deg}\left(g_{i}\right)=0$ for all $i \geq n$, which means that g_{i} is a unit in D for all $i \geq n$. Thus $f_{i} * h(D, I)=f_{n} * h(D, I)$ for all $i \geq n$.
$(2) \Rightarrow(3)$ Let $\left(a_{n}\right)_{n \geq 1}$ be an infinite sequence consisting of nonzero nonunits of D and choose any $d \in \bigcap_{n \geq 1} a_{1} \cdots a_{n} D$. Note that by Lemma 3.2(2), $\left(a_{n}\right)_{n \geq 1}$ is an infinite sequence consisting of nonzero nonunits of $h(D, I)$. Since $h(D, I)$ satisfies ACCP, we have

$$
\begin{aligned}
d X & \in \bigcap_{n \geq 1} a_{1} \cdots a_{n} h(D, I) \\
& =(0)
\end{aligned}
$$

where the equality comes from $[2$, Remark 1.1$]$. Hence $d=0$, which indicates that $\bigcap_{n \geq 1} a_{1} \cdots a_{n} D=(0)$. Thus D satisfies ACCP.
$(3) \Rightarrow(1)$ Let $\left(f_{n}\right)_{n \geq 1}$ be an infinite sequence of nonzero nonunits of $H(D, I)$. If $\left(f_{n}\right)_{n \geq 1}$ contains an infinite subsequence of series with positive order, then by Lemma $3.3, \bigcap_{n \geq 1} f_{1} * \cdots * f_{n} * H(D, I)=(0)$; so we may assume that for all $n \geq 1$, the order of f_{n} is zero. Let $g \in \bigcap_{n>1} f_{1} * \cdots * f_{n} * H(D, I)$. Then for all $n \geq 1$, there exists an element $h_{n} \in H(D, I)$ such that $g=f_{1} * \cdots * f_{n} * h_{n}$. Since $H(D, I)$ is an integral domain, we have

$$
g(\operatorname{ord}(g))=f_{1}(0) \cdots f_{n}(0) h_{n}\left(\operatorname{ord}\left(h_{n}\right)\right)
$$

for all $n \geq 1$. Note that by Lemma 3.2(1), $\left\{f_{i}(0)\right\}_{i \geq 1}$ consists of nonzero nonunits in D. Since D satisfies ACCP, we obtain

$$
\begin{aligned}
g(\operatorname{ord}(g)) & \in \bigcap_{n \geq 1} f_{1}(0) \cdots f_{n}(0) D \\
& =(0)
\end{aligned}
$$

Thus $g=0$, which implies that $H(D, I)$ satisfies ACCP.
$(3) \Leftrightarrow(4) \Leftrightarrow(5)$ These equivalences appear in [3, Proposition 4.6] (or [5, Theorem 3.7] and [6, Corollary 1.5(3)]).
$(3) \Leftrightarrow(6) \Leftrightarrow(7) \Leftrightarrow(8) \Leftrightarrow(9)$ These equivalences follow directly from Theorem 2.4 and [2, Remark 1.1] by applying $D=E$.

Acknowledgement. We would like to thank the referee for several valuable suggestions. The first author was supported by Dongil Culture \& Scholarship Foundation for the grant in 2014.

References

[1] A. Benhissi and F. Koja, Basic properties of Hurwitz series rings, Ric. mat., $\mathbf{6 1}(2012)$, 255-273.
[2] T. Dumitrescu, S. O. Ibrahim Al-Salihi, N. Radu, and T. Shah, Some factorization properties of composite domains $A+X B[X]$ and $A+X B \llbracket X \rrbracket$, Comm. Algebra, 28(2000), 1125-1139.
[3] S. Hizem, Chain conditions in rings of the form $A+X B[X]$ and $A+X I[X]$, in: M. Fontana et al.(Eds), Commutative Algebra and Its Applications, Walter de Gruyter, Berlin, 2009, 259-274.
[4] W. F. Keigher, On the ring of Hurwitz series, Comm. Algebra, 25(1997), 1845-1859.
[5] J. W. Lim and D. Y. Oh, Chain conditions in special pullbacks, C. R. Math. Acad. Sci. Paris, 350(2012), 655-659.
[6] J. W. Lim and D. Y. Oh, The ascending chain condition on principal ideals in composite generalized power series rings, submitted.

[^0]: * Corresponding Author.

 Received September 24, 2015; accepted March 15, 2016.
 2010 Mathematics Subject Classification: 13E99, 13G05.
 Key words and phrases: Composite Hurwitz series ring, composite Hurwitz polynomial ring, ascending chain condition on principal ideals.

