• 제목/요약/키워드: Composite Effect

검색결과 4,570건 처리시간 0.034초

Vibration performance of composite steel-bar truss slab with steel girder

  • Liu, Jiepeng;Cao, Liang;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.577-589
    • /
    • 2019
  • In this study, on-site testing was carried out to investigate the vibration performance of a composite steel-bar truss slab with steel girder system. Ambient vibration was performed to capture the primary vibration parameters (natural frequencies, damping ratios, and mode shapes). The composite floor possesses low frequency (< 10 Hz) and damping (< 2%). Based on experimental, theoretical, and numerical analyses on natural frequencies and mode shapes, the boundary condition of SCSC (i.e., two opposite edges simply-supported and the other two edges clamped) is deemed more reasonable for the composite floor. Walking excitations by one person (single excitation), two persons (dual excitation), and three persons (triple excitation) were considered to evaluate the vibration serviceability of the composite floor. The measured acceleration results show a satisfactory vibration perceptibility. For design convenience and safety, a crest factor ${\beta}_{rp}$ describing the ratio of peak acceleration to root-mean-square acceleration induced from the walking excitations is proposed. The comparisons of the modal parameters determined by ambient vibration and walking tests reveal the interaction effect between the human excitation and the composite floor.

Composite aluminum-slab RC beam bonded by a prestressed hybrid carbon-glass composite material

  • Rabahi Abderezak;Tahar Hassaine Daouadji;Bensatallah Tayeb
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.573-592
    • /
    • 2023
  • This paper presents a careful theoretical investigation into interfacial stresses in composite aluminum-slab reinforced concrete beam bonded by a prestressed hybrid carbon-glass composite material. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the aluminum beam, the slab reinforced concrete, the hybrid carbon-glass composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions. It is shown that the stresses at the interface are influenced by the material and geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behaviour of the interface and design of the hybrid structures.

The effect of embedding a porous core on the free vibration behavior of laminated composite plates

  • Safaei, Babak
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.659-670
    • /
    • 2020
  • This paper proposes the use of a porous core between layers of laminated composite plates to examine its effect on the natural frequencies of the resulted porous laminated composite sandwich plate (PLCSP) resting on a two-parameter elastic foundation. Moreover, it has been suggested that the dispersion of porosity has two different functionally graded (FG) patterns which are compared with a uniformly dispersed (UD) profile to find their best vibrational efficiency in the proposed PLCSPs. In FG patterns, two types of dispersions, including symmetric (FG-S) and asymmetric (FG-A) patterns have been considered. To derive the governing Eigen value equation of such structures, the first order shear deformation theory (FSDT) of plates has been employed. Accordingly, a finite element method (FEM) is developed to solve the derived Eigen value equation. Using the mentioned theory and method, the effects of porosity parameters, fiber orientation of laminated composite, geometrical dimensions, boundary conditions and elastic foundation on the natural frequencies of the proposed PLCSPs have been studied. It is observed that embedding porosity in core layer leads to a significant improvement in the natural frequencies of PLCSPs. Moreover, the natural frequencies of PLCSPs with FG porous core are higher than those with UD porous core.

Effect of fibers and welded-wire reinforcements on the diaphragm behavior of composite deck slabs

  • Altoubat, Salah;Ousmane, Hisseine;Barakat, Samer
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.153-171
    • /
    • 2015
  • Twelve large-scale composite deck slabs were instrumented and tested in a cantilever diaphragm configuration to assess the effect of fibers and welded wire mesh (WWM) on the in-plane shear capacity of composite deck slabs. The slabs were constructed with reentrant decking profile and reinforced with different types and dosages of secondary reinforcements: Conventional welded wire mesh (A142 and A98); synthetic macro-fibers (dosages of $3kg/m^3$ and $5.3kg/m^3$); and hooked-end steel fibers with a dosage of $15kg/m^3$. The deck orientation relative to the main beam (strong and weak) was also considered in this study. Fibers and WWM were found efficient in distributing the applied load to the whole matrix, inducing multiple cracking, thereby enhancing the strength and ductility of composite deck slabs. The test results indicate that fibers increased the slab's ultimate in-plane shear capacity by up to 29% and 50% in the strong and weak directions, respectively. WWM increased the ultimate in-plane shear capacity by up to 19% in the strong direction and 9% in the weak direction. The results suggest that discrete fibers can provide comparable diaphragm behavior as that with the conventional WWM.

복합구조 반복측정자료에 대한 모형 연구 (Modelling for Repeated Measures Data with Composite Covariance Structures)

  • 이재훈;박태성
    • 응용통계연구
    • /
    • 제22권6호
    • /
    • pp.1265-1275
    • /
    • 2009
  • 본 논문에서는 반복인자가 여러 개인 반복측정자료에 대하여 반복인자간의 상관성을 고려한 복합공분산(composite covariance) 모형을 살펴보았다. 그러나 반복인자가 3개 이상인 경우에는 기존의 통계프로그램을 이용하여 적합하는 것이 불가능하다. 복합공분산 모형을 실제 자료에 적합하기위해 반복인자의 차원을 축소한 모형과 랜덤효과 모형을 이용하여 근사적으로 적합하는 방법을 제시하고 883명으로부터 수집한 반복인자가 3개인 혈압자료에 적용하였다.

LSI 공법으로 제작된 C/SiC 복합재의 압축거동 평가 (Compressive Fracture Behavior of C/SiC composite fabricated by Liquid Silicon Infiltration)

  • 윤동현;김재훈
    • 한국안전학회지
    • /
    • 제33권1호
    • /
    • pp.1-6
    • /
    • 2018
  • The effects of the fiber direction, specimen size and temperature on the compressive strength of carbon fiber reinforced silicon carbide composite (C/SiC composite) manufactured by liquid silicon infiltration(LSI) is investigated. Tests were conducted in accordance with ASTM C 695 at room temperature and elevated temperatures. Experiments are conducted with two different specimens considering grain direction. With grain (W/G) specimens have a carbon fibers parallel to the load direction, but across grain (A/G) specimens have a perpendicular carbon fibers. To verify the specimen size effect of C/SiC composite, two types of specimens are manufactured. One has a one to two ratio of diameter to height and the other has a one to one ratio. The compressive strength of C/SiC composite increased as temperature rise. As specimens are larger, compressive strength of A/G specimens increased, however compressive strength of W/G decreased.

TiNi/Al기 형상기억복합재료의 강도평가를 위한 전문가시스템의 개발 (The Development of Expert System for Strength Evaluation of TiNi Fiber Reinforced Al Matrix Composite)

  • 박영철;이동화;박동성
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1099-1108
    • /
    • 2004
  • In this paper, a study on the development of expert system for Al matrix composite with shape memory alloy fiber is performed to evaluate termomechanical behavior and mechanical properties. Expert system is very useful computer-based analysis system designed to make analysis technique and knowledge conveniently available to a lot of fabricable condition. In the developed system, it is possible to predict termomechanical behavior and mechanical properties for other composite with shape memory alloy fiber. The smartness of the shape memory alloy is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. For finite element analysis, an analytical model is assumed two dimensional axisymmetric model compared of one fiber and the matrix. To evaluate the strength of composite using FEM, the concept of smart composite was simulated on computer Thus, in this paper, the FEA was carried out at two critical temperature conditions; room temperature and high temperature(363k). The finite element analysis result was compared with the test result for the analysis validity.

중공 복합사 직물의 기공도 특성이 고감성 의류용 직물의 쾌적특성에 미치는 영향 (Effect of Porosity Characteristics of Hollow Composite Yarns to the Comfort Property of the Fabrics for the High Emotional Garment)

  • 김현아;김영수;김승진
    • 한국염색가공학회지
    • /
    • 제26권3호
    • /
    • pp.218-229
    • /
    • 2014
  • The wearing comfort of garment is governed by two kinds of characteristics such as moisture and thermal transport properties and mechanical properties of fabrics. The porosity influenced by yarn and fabric structural parameters is known as main factor for wearing comfort of garment related to the moisture and thermal transport properties. This study investigated effect of porosity of composite yarns to the moisture and thermal comfort properties of composite fabrics made of hollow composite DTY and ATY yarns. The theoretical porosity and pore size were inversely proportional to cover factor of fabric, but cover factor was not correlated with experimental pore size. The wicking property of hydrophobic PET filament fabric showed inferior result irrespective of porosity, pore size and cover factor. The drying rate was superior at composite fabrics with high pore size and low cover factor, and pore size was dominant factor for drying property. On the other hand, thermal conductivity of composite fabric was mainly influenced by cover factor and not influenced by porosity. Air permeability was influenced by both porosity and cover factor and was highly increased with increasing porosity and decreasing fabric cover factor.

커버플레이트를 이용한 다단계 온도프리스트레싱으로 보강된 합성보의 하중-저항성능 분석 (Load-Carrying Capacity Evaluation of the Composite Beam Strengthened by Multi-Stepwise Thermal Prestressing Method Using Cover-Plate)

  • 안진희;정치영;최규태;김상효
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권4호통권56호
    • /
    • pp.159-169
    • /
    • 2009
  • 본 연구는 다단계 온도프리스트레싱 공법으로 보강된 합성보의 하중재하 실험 및 구조해석을 통하여 온도프리스트레싱 공법의 프리스트레스 도입효과와 단면증가효과를 평가하였다. 연구결과 온도프리스트레싱을 이용한 합성보의 보강공법은 온도프리스트레싱에 의한 프리스트레스 도입 뿐 아니라 커버플레이트의 설치에 의한 단면증가로 합성보의 처짐 또한 감소시킬 수 있으므로 합성보의 효율적인 보강공법으로 적용이 가능할 것이다.

고전기장을 이용한 전도성 고분자 복합필름의 제조 및 특성 연구 : 탄소섬유 Sizing처리가 탄소섬유/폴리에틸렌 필름의 특성에 미치는 영향 (Properties of Conductive Polymer Composite Films Fabricated under High Intensity Electric Fields : Effect of CF Sizing Treatment)

  • 고현협;김중현;임순호;김준경;최철림
    • 폴리머
    • /
    • 제25권2호
    • /
    • pp.293-301
    • /
    • 2001
  • 새로운 복합재료 제조 기술인 electron-ion technology (EIT)를 이용하여 전도성 탄소섬유/고밀도 폴리에틸렌 (CF/HDPE) 복합필름을 제조하고 탄소섬유 에폭시 sizing이 제조된 필름의 체적비저항과 인장강도 그리고 계면 특성에 미치는 영향에 대하여 연구하였다. 에폭시 sizing은 tunneling 효과를 좋게 해서 복합재료 필름의 전도성을 향상시키는 반면, 극성인 에폭시 sizing은 무극성인 폴리에틸렌과의 친화성이 없어서 탄소섬유와 폴리에틸렌간의 계면결합력을 감소시키므로 에폭시 sized 탄소섬유(CF(S))는 unsized 탄소섬유(CF(U))에 비하여 필름의 체적비저항과 인장강도를 감소시켰다. 에폭시 sizing은 탄소섬유의 nucleating efficiency를 떨어뜨려서 CF(S)/HDPE 필름이 CF(U)/HDPE 필름보다 불규칙적이고 덜 발달된 transcrystalline layer를 형성함을 관찰할 수 있었다.

  • PDF