• Title/Summary/Keyword: Composite Degree

Search Result 752, Processing Time 0.026 seconds

Flexural stiffness of steel-concrete composite beam under positive moment

  • Ding, Fa-Xing;Liu, Jing;Liu, Xue-Mei;Guo, Feng-Qi;Jiang, Li-Zhong
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1369-1389
    • /
    • 2016
  • This paper investigates the flexural stiffness of simply supported steel-concrete composite I-beams under positive bending moment through combined experimental, numerical, and different standard methods. 14 composite beams are tested for experimental study and parameters including shear connection degree, transverse and longitudinal reinforcement ratios, loading way are also investigated. ABAQUS is employed to establish finite element (FE) models to simulate the flexural behavior of composite beams. The influences of a few key parameters, such as the shear connection degree, stud arrangement, stud diameter, beam length, loading way, on the flexural stiffness is also studied by parametric study. In addition, three widely used standard methods including GB, AISC, and British standards are used to estimate the flexural stiffness of the composite beams. The results are compared with the experimental and numerical results. The findings have provided comprehensive understanding of the flexural stiffness and the modelling of the composite beams. The results also indicate that GB 50017-2003 could provide better results in comparison to the other standards.

Study on flexural capacity of simply supported steel-concrete composite beam

  • Liu, Jing;Ding, Fa-xing;Liu, Xue-mei;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.829-847
    • /
    • 2016
  • This paper investigates the flexural capacity of simply supported steel-concrete composite I beam and box beam under positive bending moment through combined experimental and finite element (FE) modeling. 24 composite beams are included into the experiments and parameters including shear connection degree, transverse reinforcement ratio, section form of girder, diameter of stud and loading way are also considered and investigated. ABAQUS is employed to establish FE models to simulate the behavior of composite beams. The influences of a few key parameters, such as the shear connection degree, stud arrangement, stud diameter, beam length and loading way, on flexural capacity are discussed. In addition, three methods including GB standard, Eurocode 4, and Nie method are also used to estimate the flexural capacity of composite beams and also for comparison with experimental and numerical results. The results indicate that Nie method may provide a better estimation in comparison to other two standards.

Transmitting Ability of Halogen Light in Different Composite Resin Colors (복합레진 색상에 따른 Halogen light의 투과도)

  • Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.4
    • /
    • pp.447-453
    • /
    • 2010
  • The purpose of this study was to compare the light transmitting ability of halogen light in different colors and thicknesses. A1, A2, A3 colors of Z-250 composite resin(3M ESPE, St. Paul, U.S.A.) were used. Degree of conversion of separated resin specimens under the 2, 3, 4mm thickness resin were measured by FTIR spectroscopy. The result shows that decrease of degree of conversion by increase of resin thickness and decrease of degree of conversion by decrease of lightness of color. Within the limitation of results, it is recommended to use more light color of composite resin in small thickness to improve degree of conversion when use halogen light.

Measurement of Degree of Hydrolysis of a PA66/GF Composite using a py-GC/MS analysis

  • Lee, Jong-Young;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.59-68
    • /
    • 2017
  • The effect on the hydrolysis resistance properties by the addition of maleic anhydride grafted EMDM (MA-g-EPDM) and PP (MA-g-PP) to a PA66/GF composite was investigated with respect to the mechanical properties, thermal properties, and morphology. The degree of hydrolysis of the PA66/GF composite was measured using py-GC/MS analysis. When compared to the PA66/GFcomposite in MEG/water solution, the composites where MA-g-EPDM and MA-g-PP were added to PA66/GF showed a higher degree of hydrolysis resistance, impact strength, and thermal properties, whereas their tensile strength, tensile modulus, flexural strength and flexural modulus decreased. As immersion time in the solution increases, the rate of tensile strength drop of the MA-g-PP added composite appeared lower than that of the PA66/MA-g-EPDM/GF and PA66/GF composites. The py-GC/MS analysis confirmed the formation of PA66 hydrolysis reaction by products such as carboxylic acid and alkylamine with increasing immersion time.

Prediction of Temperature and Degree of Cure of Carbon Fiber Composites Considering Thermal Chemical Reaction (화학 반응열을 고려한 탄소 섬유 복합재 온도와 경화도 예측)

  • Jae-Woo Yu;Wie-Dae Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.315-320
    • /
    • 2023
  • In the manufacturing process of thermosetting carbon fiber composite materials using an autoclave, the internal temperature changes according to the set temperature cycle. This temperature change causes the resin in the composite material to cure. Heat is generated through the chemical reaction of the resin, which can result in a difference between the temperature inside the autoclave and the temperature of the composite material. Previous research assumed that the temperatures of the composite material and the autoclave were the same and analyzed to predict the residual stress and thermal deformation after manufacturing. However, these stresses and deformations depend on the temperature and degree of cure of the composite material. Therefore, this study verifies a thermal-chemical model analysis technique that takes into account the heat generated by the chemical reaction of the resin to accurately calculate the temperature and degree of cure. Additionally, case studies were conducted for different thicknesses to investigate whether this model exhibits similar trends across varying thicknesses.

Characteristics of polymerization in nanofiller-containing composite resins (나노필러를 포함하고 있는 복합레진의 중합특성)

  • Lee, Hee-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • As the development of nanotechnology, the use of composite resins which containing nanofillers becomes popular. The purpose of this study was to test the degree of polymerization of nanofillercontaining composite resins. For the study, three different nanofiller-containing composite resins and two different light-curing units were used. To evaluate the degree of polymerization, the maximum polymerization shrinkage taking place during the light curing, and the microhardness, after the light curing, were measured. As results, two light-curing units exhibited a similar emission spectrum to that of the included photoinitiator, camphorquinone. The only difference between the light-curing units were the width of the emission spectrum. Three different composite resins showed different microhardness values. Among them, Grandio showed the greatest microhardness value. However, there was less microhardness difference on the top and bottom surfaces due to the difference of the light-curing units. The maximum polymerization shrinkage values were also similar in the tested specimens regardless of the difference of the light-curing units. However, Grandio showed the least polymerization shrinkage. According to the manufacturers' data, Grandio showed the highest filler content(vol%).

  • PDF

Experimental studies of headed stud shear connectors in UHPC Steel composite slabs

  • Gao, Xiao-Long;Wang, Jun-Yan;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.657-670
    • /
    • 2020
  • Due to the high compressive and tensile strength of ultra-high performance concrete (UHPC), UHPC used in steel concrete composite structures provided thinner concrete layer compared to ordinary concrete. This leaded to the headed stud shear connectors embedded in UHPC had a low aspect ratio. In order to systematic investigate the effect of headed stud with low aspect ratio on the structural behaviors of steel UHPC composite structure s this paper firstly carried out a test program consisted of twelve push out specimens. The effects of stud height, aspect ratio and reinforcement bars in UHPC on the structural behaviors of headed studs were investigated. The push out test results shows that the increasing of stud height did not obviously influence the structural behaviors of headed studs and the aspect ratio of 2.16 was proved enough to take full advantage of the headed stud strength. Based on the test results, the equation considering the contribution of weld collar was modified to predict the shear strength of headed stud embedded in UHPC. The modified equation could accurately predict the shear strength of headed stud by comparing with the experimental results. On the basis of push out test results, bending tests consisted of three steel UHPC composite slabs were conducted to investigate the effect of shear connection degree on the structural behaviors of composite slabs. The bending test results revealed that the shear connection degree had a significantly influence on the failure modes and ultimate resistance of composite slabs and composite slab with connection degree of 96% in s hear span exhibited a ductile failure accompanied by the tensile yield of steel plate and crushing of UHPC. Finally, analytical model based on the failure mode of composite slabs was proposed to predict the ultimate resistance of steel UHPC composite slabs with different shear connection degrees at the interface.

EFFECT OF PRE-HEATING ON SOME PHYSICAL PROPERTIES OF COMPOSITE RESIN (중합 전 열처리가 복합레진의 일부 물성에 미치는 영향)

  • Jin, Myoung-Uk;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.30-37
    • /
    • 2009
  • The purpose of this study was to evaluate the effect of pre-heating on some physical properties of composite resin. Eighty extracted, noncarious human molars were used in the present study. Four different temperatures of composite resin were used: $4^{\circ}C$, $17^{\circ}C$, $48^{\circ}C$, and $56^{\circ}C$. The $4^{\circ}C$ and $17^{\circ}C$ values represented the refrigerator storage temperature and room temperature respectively. For $48^{\circ}C$ and $56^{\circ}C$, composite resin was heated to the temperatures. As physical properties of composite resin, shear bond strength, microhardness, and degree of conversion were measured. The data for each group were subjected to one-way ANOVAs followed by the Tukey's HSD test at 95% confidence level. Both in enamel and dentin, among composite resin of $4^{\circ}C$, $17^{\circ}C$ $;48^{\circ}C$, and $56^{\circ}C$, the pre-heated composite resin up to $56^{\circ}C$ revealed the highest shear bond strength, and pre-heated composite resin to the higher temperature revealed higher shear bond strength. Microhardness value was also higher with composite resin of higher temperature. Degree of conversion was also higher with composite resin of the higher temperature. In this study, it seems that pre-heating composite resin up to the higher temperature may show higher shear bond strength, higher microhardness value, and higher degree of conversion. Therefore, when using composite resin in the clinic, preheating the composite resin could be recommended to have enhanced physical properties of it.

A Study on the Hemisphere-Type Compression Molding for Continous Fiber-Reinforced Polymeric Composites (연속섬유강화 플라스틱 복합재료의 반구형 압축성형성에 관한 연구)

  • 임용진;오영준;김이곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.149-153
    • /
    • 1999
  • During a hemisphere-type compression molding, the wrinkles are caused by complex stress condition. It is very important to clarify the degree of wrinkles in order to have good products. In this paper, the effects of numbers of needling and initial area on the degree of wrinkles are studied. the degree of wrinkle is expressed as nonhomogeneity.

  • PDF

A STUDY ON THE MARGINAL LEAKAGE OF COMPOSITE RESIN (복합(複合) resin의 변록누출(邊綠漏出)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Cho, Jin-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.7 no.1
    • /
    • pp.131-138
    • /
    • 1981
  • The purpose of this study was to evaluate the marginal leakage of composite resin. Preparing 144 class V cavities on freshly extracted noncarious teeth, composite resins were prepared and inserted by one dentist according to the manufacturer's instructions. The experiments were performed in two different groups; In group I; Class V cavities with $90^{\circ}$ cavosurface angle, In group II; Class V cavities with $135^{\circ}$ cavosurface angle. And each group was divided 2 subgroups; In control group; composite resin restoraions without acid etch technique. In experimental group; composite resin restorations with acid etch technique. All specimens were immersed in 0.05% crystal violet solution. Before examination, the restored teeth were subjected to thermal stress. The specimens were sectioned occlusogingivally through the center of the restorations with a diamond disk. The sections were examined under a reflected light microscope at 1 day, 7 days and 30 days after immersing the specimens in dye solution. The results were as follows; 1. Control group of group I and group II showed marginal leakage. 2. The degree of marginal leakage in experimental group was greater reduced than control group. 3. In control group, the degree of marginal leakage in group I was greater than group II. 4. In experimental group, there is not statistical differences of the degree of marginal leakage between group I & group II.

  • PDF