DOI QR코드

DOI QR Code

EFFECT OF PRE-HEATING ON SOME PHYSICAL PROPERTIES OF COMPOSITE RESIN

중합 전 열처리가 복합레진의 일부 물성에 미치는 영향

  • Jin, Myoung-Uk (Department of Conservative Dentistry, School of Dentistry, Kyungpook National University) ;
  • Kim, Sung-Kyo (Department of Conservative Dentistry, School of Dentistry, Kyungpook National University)
  • 진명욱 (경북대학교 치의학전문대학원 치과보존학교실) ;
  • 김성교 (경북대학교 치의학전문대학원 치과보존학교실)
  • Published : 2009.01.30

Abstract

The purpose of this study was to evaluate the effect of pre-heating on some physical properties of composite resin. Eighty extracted, noncarious human molars were used in the present study. Four different temperatures of composite resin were used: $4^{\circ}C$, $17^{\circ}C$, $48^{\circ}C$, and $56^{\circ}C$. The $4^{\circ}C$ and $17^{\circ}C$ values represented the refrigerator storage temperature and room temperature respectively. For $48^{\circ}C$ and $56^{\circ}C$, composite resin was heated to the temperatures. As physical properties of composite resin, shear bond strength, microhardness, and degree of conversion were measured. The data for each group were subjected to one-way ANOVAs followed by the Tukey's HSD test at 95% confidence level. Both in enamel and dentin, among composite resin of $4^{\circ}C$, $17^{\circ}C$ $;48^{\circ}C$, and $56^{\circ}C$, the pre-heated composite resin up to $56^{\circ}C$ revealed the highest shear bond strength, and pre-heated composite resin to the higher temperature revealed higher shear bond strength. Microhardness value was also higher with composite resin of higher temperature. Degree of conversion was also higher with composite resin of the higher temperature. In this study, it seems that pre-heating composite resin up to the higher temperature may show higher shear bond strength, higher microhardness value, and higher degree of conversion. Therefore, when using composite resin in the clinic, preheating the composite resin could be recommended to have enhanced physical properties of it.

본 연구의 목적은 복합레진의 광중합 전 열처리가 복합레진의 일부 물성에 미치는 영향을 평가하는 것이다. 우식이 없는 여든 개의 발거된 치아를 사용하였다. 네 가지 온도의 복합레진, 즉, 냉장 보관되어 있던 $4^{\circ}C$ 복합레진, 상온 $17^{\circ}C$의 복합레진, $Calset^{TM}$를 이용하여 $48^{\circ}C$까지 전열처리한 복합레진, 그리고 $56^{\circ}C$까지 전열처리한 복합레진을 사용하였다. 복합레진의 물성으로서 치질과의 전단결합강도, 미세경도, 그리고 이중결합 전환율을 측정하였다. 법랑질과 상아질에서 공히 $4^{\circ}C$, $17^{\circ}C$, $48^{\circ}C$, 그리고 $56^{\circ}C$의 온도 중에서 $56^{\circ}C$까지 전열처리한 복합레진이 가장 높은 전단결합강도를 보였으며, 복합레진의 온도가 높을수록 더 높은 전단결합강도를 나타내었다. 복합레진의 온도가 높을수록 더 높은 미세경도를 나타내었다. 복합레진의 온도가 높을수록 이중결합의 전환율이 더 높게 나타났다. 제한된 여건에서 행해진 본 연구의 결과를 통하여 볼 때, 냉장고 또는 실온에 보관되어 있던 복합레진을 미리 열처리하면 치질과의 전단결합강도, 복합레진의 미세경도 및 이중결합 전환율이 증가할 것으로 보인다. 따라서 임상에서 복합레진을 사용 시 복합레진의 물성을 향상시키기 위하여 레진을 미리 열처리하는 것을 추천할 수 있겠다.

Keywords

References

  1. Freedman G, Goldstep F. Ultraconservative resin restorations. J Can Dent Assoc 65:579-581, 1999
  2. Cook D, Beech R, Tyas J. Resin-based restorative materials- a review. Aust Dent J 29:291-295, 1984 https://doi.org/10.1111/j.1834-7819.1984.tb05287.x
  3. Peutzfeldt A, Asmussen E. Influence of selected components on crosslink density in polymer structures. Eur J Oral Sci 109:282-285, 2004 https://doi.org/10.1034/j.1600-0722.2001.00057.x
  4. Dickens S, Stansburry J, Choi K. Photopolymerization kinetics of methacrylate dental resin. Macromolecules 36:6043-6053, 2003 https://doi.org/10.1021/ma021675k
  5. Ferracane L. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent Mater 1:11-14, 1985 https://doi.org/10.1016/S0109-5641(85)80058-0
  6. Condon J, Ferracane J. In vitro wear of composite with varied cure, filler level, and filler treatment. J Dent Res 76(7):1405-1411, 1997 https://doi.org/10.1177/00220345970760071101
  7. Freiberg R, Ferracane J. Evaluation of cure, properties and wear resistance of artglass dental composite. Am J Dent 11:214-218, 1998
  8. Trujillo M, Stansbury W. Thermal effects on composite photopolymerization monitored by real-time NIR. J Dent Res 82 (special issue A) Abstract 0819, 2003
  9. Draughn R. Effects of temperature on mechanical properties of composite dental restorative materials. J Biomed mater Res 15:489-495, 1981 https://doi.org/10.1002/jbm.820150405
  10. Covey A, Tahaney R, Davenport M. Mechanical properties of heat-treated composite restorative materials. J Prosthet Dent 68:458-461, 1992 https://doi.org/10.1016/0022-3913(92)90410-C
  11. Ferracane L, Condon R. Post-cure heat treatments for composites: Properties and fractography. Dent Mater 8:290-295, 1992 https://doi.org/10.1016/0109-5641(92)90102-I
  12. Asmussen E. Restorative resins: Hardness and strength vs. quantity of remaining double bonds. Scand J Dent Res 90:484-489, 1982 https://doi.org/10.1111/j.1600-0722.1982.tb00766.x
  13. Davidson L, Duysters E, DeLange C. Structural changes in composite surface material after dry polishing. J Oral Rehabil 8:431-439, 1981 https://doi.org/10.1111/j.1365-2842.1981.tb00517.x
  14. DeGee J, Pallow P, Werner A. Annealing as a mechanism of increasing wear resistance of composites. Dent Mater 6:266-270, 1990 https://doi.org/10.1016/S0109-5641(05)80008-9
  15. Ferracaine J, Greener E. Fourier transform infrared analysis of degree of polymerization in unfilled resin-Methods comparison. J Dent Res 63:1093-1095, 1984 https://doi.org/10.1177/00220345840630081901
  16. Cook W, Simon G, Burchill P. Curing kinetics and thermal properties of vinyl ester resins. J Appl Poly Sci 64:769-781, 1997 https://doi.org/10.1002/(SICI)1097-4628(19970425)64:4<769::AID-APP16>3.0.CO;2-P
  17. Daronch M, Rueggerberg F, DeGoes M, Giudici R. Polymerization kinetics of pre-heated composite. J Dent Res 85(1):38-43, 2006 https://doi.org/10.1177/154405910608500106
  18. Andrzejewska E. Photopoloymerization kinetics of multifunctional monomers. Prog Poly 26:605-665, 2001 https://doi.org/10.1016/S0079-6700(01)00004-1
  19. Nicholls J. Polymerization shrinkage of densely-filled resin composite. Oper Dent 26(5):498-504, 2001
  20. Kim KO. Microleakage at the cervical margin of class II composite restorations with different intermediate layer treatments. J Kor Acad Cons Dent 28:467-474, 2003 https://doi.org/10.5395/JKACD.2003.28.6.467
  21. Holmes R, Ruerggeberg F. Composite film thickness at various temperatures. J Dent Res 83:(Abstract No. 3265), 2004
  22. Freedman G, Leinfelder K. Seventh-generation adhesive system. Dent Today 21:106-111, 2002
  23. Bortolotto T, Krejci I. The effect of temperature on hardness of a light-curing composite. J Dent Res 82 (special issue), Abstract 0119, 2003
  24. Walker M, Reem Haj-Ali, Williams K. Influence of environmental condition on dental composite flexural properties. Dent Mater 22:1002-1007, 2006 https://doi.org/10.1016/j.dental.2005.11.023
  25. Daronch M, Rueggerberg F, DeGoes M. Monomer conversion of pre-heated composite. J Dent Res 84(7):663-667, 2005 https://doi.org/10.1177/154405910508400716
  26. Opdam J, Roeters J, Joosten M, Veeke O. Porosities and voids in class I restorations placed by six operators using a packable or syringable composite. Dent Mater 18:58-63, 2002 https://doi.org/10.1016/S0109-5641(01)00020-3
  27. Bagis H, Rueggerberg F. Effect of post-cure temperature and heat duration on monomer conversion of photo- activated dental resin composite. Dent Mater 13:228-232, 1997 https://doi.org/10.1016/S0109-5641(97)80033-4
  28. Sideridou I, Tserki V. Effect of chemical structure on degree of conversion on light-cured dimethacrylatebased dental resins. Biomaterals 23:1819-1829, 2002 https://doi.org/10.1016/S0142-9612(01)00308-8
  29. Chung JH, Roh BD. In vitro micro-shear bond strength of five composite resins to dentin with five different dentin adhesives. J Kor Acad Cons Dent 29:353-364, 2004 https://doi.org/10.5395/JKACD.2004.29.4.353
  30. Han SH, Kim ES, Cho YG. Enamel adhesion of lightand chemical cured composites coupled by two step self-etch adhesives. J Kor Acad Cons Dent 32:169-179, 2007 https://doi.org/10.5395/JKACD.2007.32.3.169
  31. Sun Y, Zhang Z, Wong P. Study on mono-dispersed nano-sized silica by surface modification for underfill application. J Colloid interface Sci 292:36-444, 2005
  32. Taira M, Khan M, Ohmoto K. Curing performances of four experimental Bis-GMA based binary monomer mixtures for dental visible-light cured composite resin inlays. J Mater Sci Lett 13:1229-1231, 1994 https://doi.org/10.1007/BF00270943
  33. Kurachi C, Tuboy A, Magalhaes S. Hardness evaluation of a dental composite polymerized with experimental LED-based devices. Dent Mater 17:309-315, 2001 https://doi.org/10.1016/S0109-5641(00)00088-9