• Title/Summary/Keyword: Composite Construction Method

Search Result 644, Processing Time 0.043 seconds

A Study on the Secure Plan of Clamping Force according to the Variation of Torque-Coefficient in Torque-Shear High Strength Bolts (토크전단형 고력볼트의 토크계수 변동에 따른 체결축력 확보방안에 관한 연구)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.8-16
    • /
    • 2014
  • Torque control method and turn of nut method are specified as clamping method of high strength bolts in the steel construction specifications. Quality control of torque coefficient is essential activity because torque control method, which is presently adopted as clamping method in domestic construction sites, is affected by variation of torque coefficient. The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on the environmental factors and temperature variables despite the break of the pin tail.This study was focused to evaluate the effect of environmental factors and errors of installing bolts during tightening high strength bolts. The environmental parameters were composed of 'wet' condition, 'rust' condition, 'only exposure to air' condition. And the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter.

A Study on the Strength Rating of Continuous Composite Plate Girder Bridges by ALFD (ALFD방법에 의한 연속합성판형교의 강도평가에 대한 연구)

  • Han, Sang Cheol;Chung, Kyung Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.213-222
    • /
    • 1999
  • Elastic-plastic methods have been used for the better prediction of the actual behavior of continuous-composite plate girder bridges in the overload and maximum load analysis. The structural evaluation using ALFD(Alternate Load Factor Design) uses the elastic-plastic analysis. The plastic rotations that remain after the load is removed can be occurred by the yielding locations of the maximum moment section. This situation can occur due to the residual stresses even if the moment is below the theoretical yield moment. The local yielding causes positive automoments that assure elastic behavior under subsequent overloads. In this study, the automoments at the piers occurred due to the unit plastic rotations and other locations were calculated by the conjugate-beam method and three-moment equation, using the nine design span with progressively smaller pier sections. The automoments were determined by the developed computer programs in this study in which the moments and plastic rotations from the continuity and moment-inelastic rotation relationships must be equal. And also the ratings of 3-span continuous composite plate girder bridges with non-compact section were carried out according to the Korean Highway Bridge Specification.

  • PDF

A Study of the Advanced Composite Material Slab for Light Weight of Tall Building (초고층빌딩 경량화를 위한 복합신소재 슬래브에 관한 연구)

  • Han, Bong-Koo
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • For each construction material used, there is certain theoretical limit in sizes. For tall building construction, the reduction in slab weight is the first step to take in order to break such size limits. In this paper, the feasibility of such objective is proven and given by numerical analysis result. For a typical building slab, both concrete and advanced composite sandwich panels are considered. The concrete slab is treated as a special orthotropic plate to obtain more accurate result. For each panel, the deflection under the dead and live loads is compared, since both tensile and compressive strengths of the composites are far more higher than those of concrete. All types of sandwich panels considered, except one case, have self-weights less than one tenth of that of the reinforced concrete slab, with deflections less than that of the reinforced concrete slab.

Nonlinear Dynamic Behaviors of Laminated Composite Structures Containing Central Cutouts (중앙개구부를 갖는 복합신소재 적층 구조의 비선형 동적 거동)

  • Ji, Hyo-Seon;Lee, Sang-Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.607-614
    • /
    • 2011
  • This study deals with thegeometrical nonlinear dynamic behavior of laminated plates made of advanced composite materials (ACMs), which contain central cutouts. Based on the first-order shear deformation plate theory (FSDT), the Newmark method and Newton-Raphson iteration wereused for the nonlinear dynamic solution. The effects of the cutout sizes and lay-up sequences on the nonlinear dynamic response for various parameters werestudied using a nonlinear dynamic finite element program that was developed for this study. The several numerical results agreed well with those reported by other investigators for square composite plates with or without central cutouts, and the new results reported in this paper showed significant interactions between the cutout and the layup sequence in the laminate. Key observation points are discussed and a brief design guide for laminates with central cutouts is given.

Shear Strength of Prestressed PC-CIP Composite Beams with Vertical Shear Reinforcement (전단 철근 보강된 프리스트레스 PC와 CIP 합성보의 전단강도)

  • Suh, Jung-Il;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Kim, Chul-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.399-409
    • /
    • 2015
  • Recently, the use of composite construction method using precast (PC) and cast-in-place (CIP) concrete is increased in modular construction. For PC members, pre-tensioning is used to improve efficiency of the structural performance. However, current design codes do not clearly define shear strength of prestressed PC-CIP composite members. In this study, 22 specimens were tested to evaluate shear strength of prestressed composite members with vertical shear reinforcement. The test variables were the area ratio of high-strength (60 MPa) to low-strength concrete (24 MPa), prestressing force of strands, shear span-to-depth ratio(a/d), and vertical shear reinforcement ratio. The test results showed the prestressing force did not completely restrain diagonal cracking of non-prestressed concrete in the web. Thus, the effect of prestress force was not insignificant in the effect for monolithic beams. The vertical shear strength and horizontal shear strength of the composite beams were compared with the strength predictions of KCI design method.

Flexural Design of Double Composite Box Girder over Interior Pier by LRFD Method (LRFD법에 의한 이중합성 박스거더 최대부모멘트 단면 휨 설계)

  • Cho, Eun Young;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.737-749
    • /
    • 2007
  • Flexural design of double composite box girder over the interior pier for three-span continuous bridge was performed by the LRFD method. The maximum span length of the continuous bridge ranged from 80m to 120m and the relative ratio of the span length was assumed to be 1:1.25:1. The girder section was designed for the strength limit state and service limit state with additional design check for constructibility. Before the bottom concrete and compression flange showed a complete composite action, the buckling of lower compression flange was checked. The flexural stiffness and flexural resistance characteristics for the section and for the constituent members such as tension flange, compression flange, and web were analyzed for different thicknesses of the bottom concrete on top of the compression flange. The effect of the distribution ratio of steel between the top and bottom flanges was investigated by analyzing ductility behavior and stress distribution through the girder's depth for several different relative area ratios of steel between the top and bottom flanges. It was found that a total amount of 15% of steel can be saved by applying the double composite system compared with that of the conventional composite system.

Behavior of Composite Structure by Nonlinearity of Steel - concrete Interface (I) -Parametric Study for Nonlinear Model of Interface- (강·콘크리트 경계면의 비선형성에 따른 합성구조체 거동(I) -비선형 경계면 모델에 따른 매개변수 연구-)

  • Jeong, Youn Ju;Jung, Kwang Hoe;Kim, Byung Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.499-507
    • /
    • 2003
  • As the load is increased on the steel-concrete composite structure, its interface begins to show nonlinear behavior due to the reduction of interaction, micro-crack, slip and separation, and it causes slip-softening, Therefore, it is essential to consider the partial-interaction analysis technique. Until now, however, full-interaction or, in some instances, the linear-elastic model, which are insufficient to simulate accurate behavior, are assumed in the analysis of composite structure since the analysis method and nonlinear model for interface are very difficult and complicated. Therefore, the design of composite structure is followed by the experimental method which is inefficient-because a number of tests have to be carried out according to the design environments. In this study, we carried out the nonlinear analysis according to various interface nonlinear models by interaction magnitude, and analyzed more accurate structural behavior and performance by maximum tangential traction and slip-softening at the interface. As a result of this study. we were able to prove that the nonlinear model of interface more exactly represents behavior after yielding, such as ultimate load: that initial tangential stiffness of interface has a significant effect on the yielding load of structural members or part: and that the maximum tangential traction and slip-softening mainly effects structural yielding and ultimate load. Therefore, the structural performance of composite structure is highly dependent on the steel-concrete interface or interaction, which may result in initial tangential stiffness, maximum tangential traction and slip-softening in nonlinear model.

Flexural Behavior and Design of Concrete-filled U-shape Hybrid Composite Beams Fabricated from 570MPa High-strength Steel (570MPa급 고강도강을 적용한 콘크리트 채움 U형 하이브리드 합성보의 휨거동 및 설계)

  • Lee, Cheol Ho;So, Hyun Joon;Park, Chang Hee;Lee, Chang Nam;Lee, Seung Hwan;Oh, Ha Nool
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.109-120
    • /
    • 2016
  • Flexural tests of full-scale concrete-filled U-shape hybrid composite beams were conducted. Ordinary (SS400) and high-strength (SM570) steel plates were used in the web and in the bottom flange of U-shape steel section respectively. The primary objectives were to develop the hybrid section configuration with maximized flexural capacity and to investigate its flexural strength and deformation capacity. All the hybrid test specimens in this study exhibited the plastic moment capacity and resonable deformability. It is shown that the plastic stress distribution can be assumed in calculating the flexural strength of the proposed hybrid composite beams if the plastic neural axis is located within 15% of the total beam depth from the top of the composite slab. The procedure for computing the effective flexural stiffness of hybrid composite beams is also recommended based on test results.

The suggestion of Steel Plate-Concrete Composite Beam Shape with Bolts (볼트 체결형 강판-콘크리트 합성보의 형상 제안)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.305-314
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and a shear connector to combine the two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, a new steel-plate concrete composite (SPCC) beam was developed to reduce the size of the shear connector and improve its workability. The SPCC beam was composed of folded steel plates and concrete, without any shear connector. The folded steel plate was assembled with high strength bolts instead of welding. To improve the workability in field construction, a hat-shaped cap was attached in the junction with the slab. Monotonic two-point load testing was conducted under displacement control mode. The flexural strength of the SPCC beam specimen was calculated to be 76% of that of the complete composite beam by using the plastic stress distribution method and strain compatibility method. The cap acted as the stud and accessory. The synthesis rate could be increased by controlling the gap of the cap, and the bending performance could be evaluated by using the strain fitting method considering the synthesis rate of the SPCC beam.

Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM

  • Polatov, Askhad M.;Khaldjigitov, Abduvali A.;Ikramov, Akhmat M.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.305-321
    • /
    • 2020
  • In this paper is presented the solution method for three-dimensional problem of transversely isotropic body's elastoplastic deformation by the finite element method (FEM). The process of problem solution consists of: determining the effective parameters of a transversely isotropic medium; construction of the finite element mesh of the body configuration, including the determination of the local minimum value of the tape width of non-zero coefficients of equation systems by using of front method; constructing of the stiffness matrix coefficients and load vector node components of the equation for an individual finite element's state according to the theory of small elastoplastic deformations for a transversely isotropic medium; the formation of a resolving symmetric-tape system of equations by summing of all state equations coefficients summing of all finite elements; solution of the system of symmetric-tape equations systems by means of the square root method; calculation of the body's elastoplastic stress-strain state by performing the iterative process of the initial stress method. For each problem solution stage, effective computational algorithms have been developed that reduce computational operations number by modifying existing solution methods and taking into account the matrix coefficients structure. As an example it is given, the problem solution of fibrous composite straining in the form of a rectangle with a system of circular holes.