• Title/Summary/Keyword: Component-based System

Search Result 2,676, Processing Time 0.027 seconds

A Design of Development Process Model of Product Lines for Developing Embedded Software (임베디드 소프트웨어 개발을 위한 제품계열 중심의 개발프로세스 모델 설계)

  • Hong, Ki-Sam;Yoon, Hee-Byung
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.915-922
    • /
    • 2006
  • Recently, the requirements of the embedded software are getting diverse as the diversity of embedded software application fields increases. The systematic development methods are issued to deal with the dependency between hardware and software. However, the existing development methods have not considered the software's close connection to hardware and the high-level reusability for common requirements of several similar domains. In this paper, we propose a design method of development process model of product lines to support an efficient development method for embedded software. For this, we firstly suggest a domain scoping method and an IDEF0(Integration DEFinition)-based business model for extracting the efficient requirements. Next, we present a component deriving method based on the service architecture and an architecture design method after considering the hardware dependency. And we explain the artifacts of MSDFS(Multi Sensor Data Fusion System) at each design step in order to show how the proposed model can be applied to the embedded software development.

Performance Improvement of Traffic Signal Lights Recognition Based on Adaptive Morphological Analysis (적응적 형태학적 분석에 기초한 신호등 인식률 성능 개선)

  • Kim, Jae-Gon;Kim, Jin-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2129-2137
    • /
    • 2015
  • Lots of research and development works have been actively focused on the self-driving vehicles, locally and globally. In order to implement the self-driving vehicles, lots of fundamental core technologies need to be successfully developed and, specially, it is noted that traffic lights detection and recognition system is an essential part of the computer vision technologies in the self-driving vehicles. Up to nowadays, most conventional algorithm for detecting and recognizing traffic lights are mainly based on the color signal analysis, but these approaches have limits on the performance improvements that can be achieved due to the color signal noises and environmental situations. In order to overcome the performance limits, this paper introduces the morphological analysis for the traffic lights recognition. That is, by considering the color component analysis and the shape analysis such as rectangles and circles simultaneously, the efficiency of the traffic lights recognitions can be greatly increased. Through several simulations, it is shown that the proposed method can highly improve the recognition rate as well as the mis-recognition rate.

Real-time Fault Diagnosis of Induction Motor Using Clustering and Radial Basis Function (클러스터링과 방사기저함수 네트워크를 이용한 실시간 유도전동기 고장진단)

  • Park, Jang-Hwan;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.55-62
    • /
    • 2006
  • For the fault diagnosis of three-phase induction motors, we construct a experimental unit and then develop a diagnosis algorithm based on pattern recognition. The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, preprocessing is performed to make the acquired current simplified and normalized. To simplify the data, three-phase current is transformed into the magnitude of Concordia vector. As the next step, feature extraction is performed by kernel principal component analysis(KPCA) and linear discriminant analysis(LDA). Finally, we used the classifier based on radial basis function(RBF) network. To show the effectiveness, the proposed diagnostic system has been intensively tested with the various data acquired under different electrical and mechanical faults with varying load.

Fault Modeling and Diagnosis using Wavelet Decomposition in Squirrel-Cage Induction Motor Under Mixed Fault Condition (복합고장을 가지는 농형유도전동기의 모델링과 웨이블릿 분해를 이용한 고장진단)

  • Kim, Youn-Tae;Bae, Hyeon;Park, Jin-Su;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.691-697
    • /
    • 2006
  • Induction motors are critical components in industrial process. So there are many research in the condition based maintenance, online monitoring system, and fault detection. This paper presents a scheme on the detection and diagnosis of the three-phase squirrel induction motor under unbalanced voltage, broken rotor bar, and a combination of these two faults. Actually one fault happen in operation, it influence other component in motor or cause another faults. Accordingly it is useful to diagnose and detect a combination fault in induction motor as well as each fault. The proposed fault detection and diagnosis algorithm is based on the stator currents from the squirrel induction motor and simulated with the aid of Matlab Simulink.

A Fast Method for Face Detection Based on PCA and SVM (PCA와 SVM에 기반하는 빠른 얼굴탐지 방법)

  • Xia, Chun-Lei;Shin, Hyeon-Gab;Park, Myeong-Chul;Ha, Seok-Wun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1129-1135
    • /
    • 2007
  • Human face detection technique plays an important role in computer vision area. It has lots of applications such as face recognition, video surveillance, human computer interface, face image database management, and querying image databases. In this paper, a fast face detection approach using Principal Component Analysis (PCA) and Support Vector Machines (SVM) is proposed based on the previous study on face detection technique. In the proposed detection system, firstly it filter the face potential area using statistical feature which is generated by analyzing the local histogram distribution the detection process is speeded up by eliminating most of the non-face area in this step. In the next step, PCA feature vectors are generated, and then detect whether there are faces present in the test image using SVM classifier. Finally, store the detection results and output the results on the test image. The test images in this paper are from CMU face database. The face and non-face samples are selected from the MIT data set. The experimental results indicate the proposed method has good performance for face detection.

Performance Improvement of Distributed Consensus Algorithms for Blockchain through Suggestion and Analysis of Assessment Items (평가항목 제안 및 분석을 통한 블록체인 분산합의 알고리즘 성능 개선)

  • Kim, Do Gyun;Choi, Jin Young;Kim, Kiyoung;Oh, Jintae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.179-188
    • /
    • 2018
  • Recently, blockchain technology has been recognized as one of the most important issues for the 4th Industrial Revolution which can be represented by Artificial Intelligence and Internet of Things. Cryptocurrency, named Bitcoin, was the first successful implementation of blockchain, and it triggered the emergence of various cryptocurrencies. In addition, blockchain technology has been applied to various applications such as finance, healthcare, manufacturing, logistics as well as public services. Distributed consensus algorithm is an essential component in blockchain, and it enables all nodes belonging to blockchain network to make an agreement, which means all nodes have the same information. For example, Bitcoin uses a consensus algorithm called Proof-of-Work (PoW) that gives possession of block generation based on the computational volume committed by nodes. However, energy consumption for block generation in PoW has drastically increased due to the growth of computational performance to prove the possession of block. Although many other distributed consensus algorithms including Proof-of-Stake are suggested, they have their own advantages and limitations, and new research works should be proposed to overcome these limitations. For doing this, above all things, we need to establish an evaluation method existing distributed consensus algorithms. Based on this motivation, in this work, we suggest and analyze assessment items by classifying them as efficiency and safety perspectives for investigating existing distributed consensus algorithms. Furthermore, we suggest new assessment criteria and their implementation methods, which can be used for a baseline for improving performance of existing distributed consensus algorithms and designing new consensus algorithm in future.

Automatic Categorization of Islamic Jurisprudential Legal Questions using Hierarchical Deep Learning Text Classifier

  • AlSabban, Wesam H.;Alotaibi, Saud S.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.281-291
    • /
    • 2021
  • The Islamic jurisprudential legal system represents an essential component of the Islamic religion, that governs many aspects of Muslims' daily lives. This creates many questions that require interpretations by qualified specialists, or Muftis according to the main sources of legislation in Islam. The Islamic jurisprudence is usually classified into branches, according to which the questions can be categorized and classified. Such categorization has many applications in automated question-answering systems, and in manual systems in routing the questions to a specialized Mufti to answer specific topics. In this work we tackle the problem of automatic categorisation of Islamic jurisprudential legal questions using deep learning techniques. In this paper, we build a hierarchical deep learning model that first extracts the question text features at two levels: word and sentence representation, followed by a text classifier that acts upon the question representation. To evaluate our model, we build and release the largest publicly available dataset of Islamic questions and answers, along with their topics, for 52 topic categories. We evaluate different state-of-the art deep learning models, both for word and sentence embeddings, comparing recurrent and transformer-based techniques, and performing extensive ablation studies to show the effect of each model choice. Our hierarchical model is based on pre-trained models, taking advantage of the recent advancement of transfer learning techniques, focused on Arabic language.

Analysis of the Recall Demand Pattern of Imported Cars and Application of ARIMA Demand Forecasting Model (수입자동차 리콜 수요패턴 분석과 ARIMA 수요 예측모형의 적용)

  • Jeong, Sangcheon;Park, Sohyun;Kim, Seungchul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.93-106
    • /
    • 2020
  • This research explores how imported automobile companies can develop their strategies to improve the outcome of their recalls. For this, the researchers analyzed patterns of recall demand, classified recall types based on the demand patterns and examined response strategies, considering plans on how to procure parts and induce customers to visit workshops, recall execution capacity and costs. As a result, recalls are classified into four types: U-type, reverse U-type, L- type and reverse L-type. Also, as determinants of the types, the following factors are further categorized into four types and 12 sub-types of recalls: the height of maximum demand, which indicates the volatility of recall demand; the number of peaks, which are the patterns of demand variations; and the tail length of the demand curve, which indicates the speed of recalls. The classification resulted in the following: L-type, or customer-driven recall, is the most common type of recalls, taking up 25 out of the total 36 cases, followed by five U-type, four reverse L-type, and two reverse U-type cases. Prior studies show that the types of recalls are determined by factors influencing recall execution rates: severity, the number of cars to be recalled, recall execution rate, government policies, time since model launch, and recall costs, etc. As a component demand forecast model for automobile recalls, this study estimated the ARIMA model. ARIMA models were shown in three models: ARIMA (1,0,0), ARIMA (0,0,1) and ARIMA (0,0,0). These all three ARIMA models appear to be significant for all recall patterns, indicating that the ARIMA model is very valid as a predictive model for car recall patterns. Based on the classification of recall types, we drew some strategic implications for recall response according to types of recalls. The conclusion section of this research suggests the implications for several aspects: how to improve the recall outcome (execution rate), customer satisfaction, brand image, recall costs, and response to the regulatory authority.

Separation Inverter Noise and Detection of DC Series Arc in PV System Based on Discrete Wavelet Transform and High Frequency Noise Component Analysis (DWT 및 고주파 노이즈 성분 분석을 이용한 PV 시스템 인버터 노이즈 구분 및 직렬 아크 검출)

  • Ahn, Jae-Beom;Jo, Hyun-Bin;Lee, Jin-Han;Cho, Chan-Gi;Lee, Ki-Duk;Lee, Jin;Lim, Seung-Beom;Ryo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.271-276
    • /
    • 2021
  • Arc fault detector based on multilevel DWT with analysis of high-frequency noise components over 100 kHz is proposed in this study to improve the performance in detecting serial arcs and distinguishing them from inverter noise in PV systems. PV inverters generally operate at a frequency range of 20-50 kHz for switching operation and maximum power tracking control, and the effect of these frequency components on the signal for arc detection leads to negative arc detection. High-speed ADC and multilevel DWT are used in this study to analyze frequency components above 100 kHz. Such high frequency components are less influenced by inverter noise and utilized to detect as well as separate DC series arc from inverter noise. Arc detectors identify the input current of PV inverters using a Rogowski coil. The sensed signal is filtered, amplified, and used in 800kSPS ADC and DWT analysis and arc occurrence determination in DSP. An arc detection simulation facility in UL1699B was constructed and AFD tests the proposed detector were conducted to verify the performance of arc detection and performance of distinction of the negative arc. The satisfactory performance of the arc detector meets the standard of arc detection and extinguishing time of UL1699B with an arc detection time of approximately 0.11 seconds.

Modeling Soil Temperature of Sloped Surfaces by Using a GIS Technology

  • Yun, Jin I.;Taylor, S. Elwynn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.113-119
    • /
    • 1998
  • Spatial patterns of soil temperature on sloping lands are related to the amount of solar irradiance at the surface. Since soil temperature is a critical determinant of many biological processes occurring in the soil, an accurate prediction of soil temperature distribution could be beneficial to agricultural and environmental management. However, at least two problems are identified in soil temperature prediction over natural sloped surfaces. One is the complexity of converting solar irradiances to corresponding soil temperatures, and the other, if the first problem could be solved, is the difficulty in handling large volumes of geo-spatial data. Recent developments in geographic information systems (GIS) provide the opportunity and tools to spatially organize and effectively manage data for modeling. In this paper, a simple model for conversion of solar irradiance to soil temperature is developed within a GIS environment. The irradiance-temperature conversion model is based on a geophysical variable consisting of daily short- and long-wave radiation components calculated for any slope. The short-wave component is scaled to accommodate a simplified surface energy balance expression. Linear regression equations are derived for 10 and 50 cm soil temperatures by using this variable as a single determinant and based on a long term observation data set from a horizontal location. Extendability of these equations to sloped surfaces is tested by comparing the calculated data with the monthly mean soil temperature data observed in Iowa and at 12 locations near the Tennessee - Kentucky border with various slope and aspect factors. Calculated soil temperature variations agreed well with the observed data. Finally, this method is applied to a simulation study of daily mean soil temperatures over sloped corn fields on a 30 m by 30 m resolution. The outputs reveal potential effects of topography including shading by neighboring terrain as well as the slope and aspect of the land itself on the soil temperature.

  • PDF