• Title/Summary/Keyword: Component-based System

Search Result 2,676, Processing Time 0.033 seconds

Object Width Measurement System Using Light Sectioning Method (광절단법을 이용한 물체 크기 측정 시스템)

  • Lee, Byeong-Ju;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.697-705
    • /
    • 2014
  • This paper presents a vision based object width measurement method and its application where the light sectioning method is employed. The target object for measurement is a tread, which is the most outside component of an automobile tire. The entire system applying the measurement method consists of two processes, i.e. a calibration process and a detection process. The calibration process is to identify the relationships between a camera plane and a laser plane, and to estimate a camera lens distortion parameters. As the process requires a test pattern, namely a jig, which is elaborately manufactured. In the detection process, first of all, the region that a laser light illuminates is extracted by applying an adaptive thresholding technique where the distribution of the pixel brightness is considered to decide the optimal threshold. Then, a thinning algorithm is applied to the region so that the ends and the shoulders of a tread are detected. Finally, the tread width and the shoulder width are computed using the homography and the distortion coefficients obtained by the calibration process.

A Five-Phase Induction Motor Speed Control System Excluding Effects of 3rd Current Harmonics Component

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.294-303
    • /
    • 2011
  • In this paper an effective five-phase induction motor (IM) and its drive methods are proposed. Due to the additional degrees of freedom, the five-phase IM drive presents unique characteristics for enhancing the torque producing capability of the motor. Also the five-phase motor drives possess many other advantages when compared to traditional three-phase motor drives. Some of these advantages include, reducing the amplitude and increasing the frequency of the torque pulsation, reducing the amplitude of the current without increasing the voltage per phase and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated winding, the produced back electromotive force (EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus the third harmonic of the currents. For demonstrating the superior performance of the proposed five-phase IM, the motors are also analyzed on the synchronously rotating reference frame. To supply trapezoidal current waveform and to exclude the effect of the $3^{rd}$ harmonic current, a new control stratagem is proposed. The proposed control method is based on direct torque control (DTC) and rotor flux oriented control (RFOC) of the five-phase IM drives. It is able to reduce the acoustical noise, the torque, the flux, the current, and the speed pulsations during the steady state. The DTC transient merits are preserved, while a better quality steady-state performance is produced in the five phase motor drive for a wide speed range. Experimental results clearly demonstrated a more dynamic steady state performance with the proposed control system.

An Adaptive Classification Model Using Incremental Training Fuzzy Neural Networks (점증적 학습 퍼지 신경망을 이용한 적응 분류 모델)

  • Rhee, Hyun-Sook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.736-741
    • /
    • 2006
  • The design of a classification system generally involves data acquisition module, learning module and decision module, considering their functions and it is often an important component of intelligent systems. The learning module provides a priori information and it has been playing a key role for the classification. The conventional learning techniques for classification are based on a winner take all fashion which does not reflect the description of real data where boundarues might be fuzzy Moreover they need all data for the learning of its problem domain. Generally, in many practical applications, it is not possible to prepare them at a time. In this paper, we design an adaptive classification model using incremental training fuzzy neural networks, FNN-I. To have a more useful information, it introduces the representation and membership degree by fuzzy theory. And it provides an incremental learning algorithm for continuously gathered data. We present tie experimental results on computer virus data. They show that the proposed system can learn incrementally and classify new viruses effectively.

Bit Split Algorithm for Applying the Multilevel Modulation of Iterative codes (반복부호의 멀티레벨 변조방식 적용을 위한 비트분리 알고리즘)

  • Park, Tae-Doo;Kim, Min-Hyuk;Kim, Nam-Soo;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1654-1665
    • /
    • 2008
  • This paper presents bit splitting methods to apply multilevel modulation to iterative codes such as turbo code, low density parity check code and turbo product code. Log-likelihood ratio method splits multilevel symbols to soft decision symbols using the received in-phase and quadrature component based on Gaussian approximation. However it is too complicate to calculate and to implement hardware due to exponential and logarithm calculation. Therefore this paper presents Euclidean, MAX, sector and center focusing method to reduce the high complexity of LLR method. Also, this paper proposes optimal soft symbol split method for three kind of iterative codes. Futhermore, 16-APSK modulator method with double ring structure for applying DVB-S2 system and 16-QAM modulator method with lattice structure for T-DMB system are also analyzed.

Design and Manufacture of Traveling-wave Electro-optic Modulator for X-band LFM Signal Generation (X-대역 LFM 신호생성을 위한 진행파형 전광변조기의 설계 및 제작)

  • Yi, Minwoo;Yoo, Sungjun;Bae, Youngseok;Jang, Sunghoon;Ryoo, Joonhyung;Shin, Jinwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.610-618
    • /
    • 2021
  • In this paper, a photonic-based microwave system technology is described, and a traveling-wave electro-optic modulator is designed and manufactured as a key component. The fabricated modulator is composed of a metal diffusion waveguide for optical transmission and a planar waveguide electrode on lithium niobate substrate for microwave transmission. The electro-optic response bandwidth of I and Q channels in a fabricated dual parallel Mach-Zehnder modulator were measured for 27.67 and 28.11 GHz, respectively. Photonic four times up-converted X-band frequency and linear frequency modulated signal were confirmed using the fabricated electro-optic modulator by S-band input signal. The confirmed broadband signal can be applied to a microwave system for surveillance and high-resolution ISAR imaging.

Advanced Estimation Model of Runway Visual Range using Deep Neural Network (심층신경망을 이용한 활주로 가시거리 예측 모델의 고도화)

  • Ku, SungKwan;Park, ChangHwan;Hong, SeokMin
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.491-499
    • /
    • 2018
  • Runway visual range (RVR), one of the important indicators of aircraft takeoff and landing, is affected by meteorological conditions such as temperature, humidity, etc. It is important to estimate the RVR at the time of arrival in advance. This study estimated the RVR of the local airport after 1 hour by upgrading the RVR estimation model using the proposed deep learning network. To this end, the advancement of the estimation model was carried out by changing the time interval of the meteorological data (temperature, humidity, wind speed, RVR) as input value and the linear conversion of the results. The proposed method generates estimation model based on the past measured meteorological data and estimates the RVR after 1 hour and confirms its validity by comparing with measured RVR after 1 hour. The proposed estimation model could be used for the RVR after 1 hour as reference in small airports in regions which do not forecast the RVR.

Cyclic testing of scaled three-story special concentrically braced frame with strongback column

  • Chen, Chui-Hsin;Tsai, Yi-Rung;Tang, Yao
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.163-173
    • /
    • 2019
  • For Special Concentrically Braced Frame (SCBF), it is common that the damage concentrates at a certain story instead of spreading over all stories. Once the damage occurs, the soft-story mechanism is likely to take place and possibly to result in the failure of the whole system with more damage accumulation. In this study, we use a strongback column which is an additional structural component extending along the height of the building, to redistribute the excessive deformation of SCBF and activate more structural members to dissipate energy and thus avoid damage concentration and improve the seismic performance of SCBF. We tested one-third-scaled, three-story, double-story X SCBF specimens with static cyclic loading procedure. Three specimens, namely S73, S42 and S0, which represent different combinations of stiffness and strength factors ${\alpha}$ and ${\beta}$ for the strongback columns, were designed based on results of numerical simulations. Specimens S73 and S42 were the specimens with the strongback columns, and S0 is the specimen without the strongback column. Test results show that the deformation distribution of Specimen S73 is more uniform and more brace members in three stories perform nonlinearly. Comparing Drift Concentration Factor (DCF), we can observe 29% and 11% improvement in Specimen S73 and S42, respectively. This improvement increases the nonlinear demand of the third-story braces and reduces that of the first-story braces where the demand used to be excessive, and, therefore, postpones the rupture of the first-story braces and enhances the ductility and energy dissipation capacity of the whole SCBF system.

Development of Evaluation Indicators for the Usability Evaluation of Smart Home App Design (스마트 홈(Smart Home) 앱 디자인의 사용성 평가를 위한 평가지표 개발)

  • Li, Man;Kim, Maeng Ho
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.5
    • /
    • pp.249-258
    • /
    • 2019
  • Currently, people are paying more attention to smart home businesses. Therefore, the research on smart home system is becoming important. Smart Home App, which is an important component of smart home system, needs to consider the development of evaluation indicators for usability. In this regard, this paper takes smart home App as the object to develop the usability evaluation indicators of smart home App design. For this purpose, this study performed three rounds of survey by using the Delphi method. In the first round, 8 suitable areas were selected by collecting opinions from experts and analyzing the Content Validity Ratio, which was derived from literature review. Based on the results of the first survey, a total of 38 evaluation items were collected through prior research and user interview surveys. For the 38 collected evaluation items, 27 evaluation items have been selected by analyzing Average Value, Standard Deviation, Content Validity Ratio, Consultation and Convergence in the second and third rounds. The result of this study can be used as a guideline when evaluating the usability of smart home App design.

Design Study of a Brazed Plate Heat Exchanger Condenser Through Two-Phase Flow Analysis (이상유동 해석을 통한 브레이징 판형 응축기 설계 연구)

  • Hwang, Dae-jung;Oh, Cheol;Park, Sang-kyun;Jee, Jae-hoon;Bang, Eun-shin;Lee, Byeong-gil
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.73-81
    • /
    • 2022
  • This study was aimed at designing a condenser, as a component of the organic Rankine cycle system for ships. The condenser was manufactured through press molding to achieve a bent shape to enhance the heat transfer performance, considering the shape of the heat transfer plate used in a brazing plate heat exchanger. The heat transfer plate was made of copper-nickel alloy. The required heat transfer rate for the condenser was 110 kW, and the maximum number of layers was set as 25, considering the characteristics of high-temperature brazing. Computational fluid dynamics techniques were used to perform the thermal fluid analysis, based on the ANSYS CFX (v.18.1) commercial program. The heat transfer rate of the condenser was 4.96 kW for one layer (width and length of 0.224 and 0.7 m, respectively) of the heat transfer exchanger. The fin efficiency pertaining to the heat transfer plate was approximately 20%. The heat flow analysis for one layer of the heat exchanger plate indicated that the condenser with 25 layers of heat transfer plates could achieve a heat transfer rate of 110 kW.

Analysis of the Physical Properties of the Conductive Paste according to the Type of Binder Resin and Simulation of Mechanical Properties according to Ag Flake Volume Fraction (바인더 수지 종류에 따른 도전성 페이스트의 물성 분석 및 Ag flake 부피 분율에 따른 기계적 특성 시뮬레이션 연구)

  • Sim, Ji-Hyun;Yun, Hyeon-Seong;Yu, Seong-Hun;Park, Jong-Su;Jeon, Seong-Min;Bae, Jin-Seok
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.69-74
    • /
    • 2022
  • In this study, the conductive paste used in a wide range such as wiring in the electronic packaging field, the automobile industry, and electronic products is manufactured under various process conditions due to the simplicity of the process, and then the thermal, mechanical, and electrical characteristics are analyzed and simulation studies are conducted to optimize the process. to establish the conditions of the conductive paste manufacturing process. First, a conductive paste was prepared by setting various types of binder resin, an essential component of the conductive paste, and characteristics such as thermal conductivity, tensile strength, and elongation were analyzed. Among the binder resins, the conductive paste applied with a flexible epoxy material had the best physical properties, and a simulation study was conducted based on the physical property data base of the conductive face. As a result of the simulation, the best physical properties were exhibited when the Ag flake volume fraction was 60%.