• Title/Summary/Keyword: Component-based System

Search Result 2,676, Processing Time 0.036 seconds

A Design of Vehicle Management System Apply Most Network And Sensor (MOST 네트워크와 센서를 활용한 차량 관리 시스템 설계)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.95-98
    • /
    • 2008
  • The vehicle has many technique change from The requirement of the safety the energy environment and convenience dimension is an enlargement toe. This is keeping changing the paradigm of the vehicle industry rapidly. The change to be technical such brought the intelligence of the former control device. And this organizes a sensor network among each systems and makes new traffic system. This paper a standard framework based on Sensor. We call it Vehicle Management System. The VMS used MOST network and It is able to make the stability of the component swap time or vehicle order the greatest.

  • PDF

Machine vision system design for inspecting steel bearing balls (베어링 강구 검사용 기계시각 시스템 설계)

  • Park, Su-Woo;Kim, Yoon-Su;Lee, Sang-Ok;Lim, Byung-Hun;Kim, Tae-Gyun;Park, Cheol-Young;Choi, Byung-Jae;Lee, Moon-Rak;Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.338-345
    • /
    • 2008
  • Steel bearing balls are important component in machines having moving parts. In this paper we describe a vision-based automatic inspection system designed for sensing defects on the surface of steel bearing balls. The system has a camera looking down over a rail on which balls roll. Two mirrors are installed at both sides of the rail so that the side parts of a ball can be well inspected. The entire ball surface can be sufficiently seen by taking three images at $120^{\circ}$ rotation interval. Defects are detected by thresholding the difference image between an image captured and the reference image of a good ball.

Effect of Heat Treatment on Fatigue Life of the Power Train Part (파워트레인 부품의 피로수명에 미치는 열처리의 영향)

  • Hur, M.D.;Shim, T.Y.;Lee, K.O.;Yu, G.B.;Kang, S.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.4
    • /
    • pp.203-209
    • /
    • 2009
  • Dual mass flywheel is the newly developed flywheel system which reduces the noise and vibration and make a better and comfortable ride of cars by adding inertia mass and damping device. However, verification of performance for this system should be carried out since this system is under developing status in our country. Especially, the durability for each part of this system should be guaranteed. Durable properties of driver plate which is the key component of dual mass flywheel were first investigated both in the raw (SCM435 in JIS) and heat-treated material. In addition, fatigue life analysis of driver plate was preformed in the real condition and the results were verified by comparison with the results of rig test.

Fault Diagnosis of Drone Using Machine Learning (머신러닝을 이용한 드론의 고장진단에 관한 연구)

  • Park, Soo-Hyun;Do, Jae-Seok;Choi, Seong-Dae;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.28-34
    • /
    • 2021
  • The Fourth Industrial Revolution has led to the development of drones for commercial and private applications. Therefore, the malfunction of drones has become a prominent problem. Failure mode and effect analysis was used in this study to analyze the primary cause of drone failure, and blade breakage was observed to have the highest frequency of failure. This was tested using a vibration sensor placed on drones along the breakage length of the blades. The data exhibited a significant increase in vibration within the drone body for blade fracture length. Principal component analysis was used to reduce the data dimension and classify the state with machine learning algorithms such as support vector machine, k-nearest neighbor, Gaussian naive Bayes, and random forest. The performance of machine learning was higher than 0.95 for the four algorithms in terms of accuracy, precision, recall, and f1-score. A follow-up study on failure prediction will be conducted based on the results of fault diagnosis.

A Study on Emulsified Fuel Conditions and the Behavior of Diesel Engine Injection System based on Data Analysis (데이터 분석 기반 유화연료 조건과 디젤엔진 분사시스템 거동에 관한 연구)

  • Kim, Min-Seop;Ejike, Akpudo Ugochukwu;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.80-88
    • /
    • 2021
  • The behavior of the injection system was determined through FFT and PSD analysis of the pressure data of the common rail, and when the diesel fuel is mixed with water, the pressure data of the common rail, depending on the water content and engine rotation speed, represent a different frequency component distribution. Recently, a theory has been suggested that mixing diesel fuel with water controls engine overheating, fuel efficiency, NOx, CO, etc., but if water content exceeds 10%, it can have a fatal adverse effect on the engine's injection system. In the future, it is necessary to promote fault diagnosis and prediction studies of diesel engines using FFT and PSD results from common rail pressure data.

Smart Railway Communication Standardization Trend and Direction (스마트 철도 통신 표준화 동향과 지향점)

  • Kim, Jong-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.207-212
    • /
    • 2022
  • The rail transport system is developing into a smart railroad that pursues intelligence beyond the automation stage of each component in recent years. Smart railways based on ICT (: Information & Communications Technology) technologies such as IoT (: Internet of Things), big data, deep learning, AI (: Artificial Intelligence), and block chain are expected to cause many developmental changes in domestic and foreign railway technologies. In this paper, we look at the domestic and international standardization trends of railway communication technology, which forms the basis of such smart railway system, and discuss the direction for train control technology(CBTC) in Korea's railway transportation system to become a leading technology(UBTC) in the world railway industry in the future.

Usability index evaluation system for mobile WAP service (무선인터넷 서비스 사용성 지수 평가 체계)

  • Park, Hwan-Su
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.152-157
    • /
    • 2008
  • The customer satisfaction of WAP service greatly relies on the usability of the service due to the limited display size of a mobile phone and limitation in realizing UI (User Interface) for function keys, browser, and OS (operating system) Currently, a number of contents providers develop and deliver varying services, and thus, it is critical to control quality level of UI in consistent standards and manner. This study suggests usability index evaluation system to achieve consistent UI quality control of various WAP services. The system adopts both top-down and bottom-up approaches. The former concerns deriving UI design components and evaluation checklists for the WAP, based on the usability attributes and UI principles. The latter concerns deriving usability-related evaluation checklists from the established UI design features, and then grouping them from the viewpoint of usability principles and attributes. This bidirectional approach has two outstanding advantages: it allows thorough examination of potential elements that can cause usability problems from the standpoint of usability attributes, and also derives specific evaluation elements from the perspective of UI design components that are relevant to the real service environment. The evaluation system constitutes a hierarchical structure by networking usability attributes, UI guideline which indicates usability principles for each attribute, and usability evaluation checklist for each UI component that enables specific evaluation. Especially, each evaluation checklist contains concrete contents and format so that it can be readily marked in O/X. The score is based on the ratio of number of items that received positive answer to the number of total items. This enables a quantitative evaluation of the usability of mobile WAP service. The validity of the proposed evaluation system has been proved through comparative analysis with the real usability problems based on the user test. A software was developed that provides guideline for evaluation objects, criteria and examples for each checklist, and automatically calculates a score. The software was applied to evaluating and improving the real mobile WAP service.

  • PDF

Active Frequency with a Positive Feedback Anti-Islanding Method Based on a Robust PLL Algorithm for Grid-Connected PV PCS

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.360-368
    • /
    • 2011
  • This paper proposes an active frequency with a positive feedback in the d-q frame anti-islanding method suitable for a robust phase-locked loop (PLL) algorithm using the FFT concept. In general, PLL algorithms for grid-connected PV PCS use d-q transformation and controllers to make zero an imaginary part of the transformed voltage vector. In a real grid system, the grid voltage is not ideal. It may be unbalanced, noisy and have many harmonics. For these reasons, the d-q transformed components do not have a pure DC component. The controller tuning of a PLL algorithm is difficult. The proposed PLL algorithm using the FFT concept can use the strong noise cancelation characteristics of a FFT algorithm without a PI controller. Therefore, the proposed PLL algorithm has no gain-tuning of a PI controller, and it is hardly influenced by voltage drops, phase step changes and harmonics. Islanding prediction is a necessary feature of inverter-based photovoltaic (PV) systems in order to meet the stringent standard requirements for interconnection with an electrical grid. Both passive and active anti-islanding methods exist. Typically, active methods modify a given parameter, which also affects the shape and quality of the grid injected current. In this paper, the active anti-islanding algorithm for a grid-connected PV PCS uses positive feedback control in the d-q frame. The proposed PLL and anti-islanding algorithm are implemented for a 250kW PV PCS. This system has four DC/DC converters each with a 25kW power rating. This is only one-third of the total system power. The experimental results show that the proposed PLL, anti-islanding method and topology demonstrate good performance in a 250kW PV PCS.

Development of Real-time Mission Monitoring for the Korea Augmentation Satellite System

  • Daehee, Won;Koontack, Kim;Eunsung, Lee;Jungja, Kim;Youngjae, Song
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Korea Augmentation Satellite System (KASS) is a satellite-based augmentation system (SBAS) that provides approach procedure with vertical guidance-I (APV-I) level corrections and integrity information to Korea territory. KASS is used to monitor navigation performance in real-time, and this paper introduces the design, implementation, and verification process of mission monitoring (MIMO) in KASS. MIMO was developed in compliance with the Minimum Operational Performance Standards of the Radio Technical Commission for Aeronautics for Global Positioning System (GPS)/SBAS airborne equipment. In this study, the MIMO system was verified by comparing and analyzing the outputs of reference tools. Additionally, the definition and derivation method of accuracy, integrity, continuity, and availability subject to MIMO were examined. The internal and external interfaces and functions were then designed and implemented. The GPS data pre-processing was minimized during the implementation to evaluate the navigation performance experienced by general users. Subsequently, tests and verification methods were used to compare the obtained results based on reference tools. The test was performed using the KASS dataset, which included GPS and SBAS observations. The decoding performance of the developed MIMO was identical to that of the reference tools. Additionally, the navigation performance was verified by confirming the similarity in trends. As MIMO is a component of KASS used for real-time monitoring of the navigation performance of SBAS, the KASS operator can identify whether an abnormality exists in the navigation performance in real-time. Moreover, the preliminary identification of the abnormal point during the post-processing of data can improve operational efficiency.

The thermodynamic efficiency characteristics of combined cogeneration system of 120MW (120MW급 열병합 복합발전시스템의 열역학적 효율 특성)

  • Choi, Myoungjin;Kim, Hongjoo;Kim, Byeongheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, acombined cogeneration power plant produced two types of thermal energy and electric or mechanical power in a single process. The performance of each component of the gas turbine-combined cogeneration system was expressed as a function of the fuel consumption of the entire system, and the heat and electricity performance of each component. The entire system consisted of two gas turbines in the upper system, and two heat recovery steam generators (HRSG), a steam turbine, and two district heat exchangers in the lower system. In the gas turbine combined cogeneration system, the performance test after 10,000 hours of operation time, which is subject to an ASME PTC 46 performance test, was carried out by the installation of various experimental facilities. The performance of the overall output and power plant efficiency was also analyzed. Based on the performance test data, the test results were compared to confirm the change in performance. This study performed thermodynamic system analysis of gas turbines, heat recovery steam generators, and steam turbines to obtain the theoretical results. A comparison was made between the theoretical and actual values of the total heat generation value of the entire system and the heat released to the atmosphere, as well as the theoretical and actual efficiencies of the electrical output and thermal output. The test results for the performance characteristics of the gas turbine combined cogeneration power plant were compared with the thermodynamic efficiency characteristics and an error of 0.3% was found.