• Title/Summary/Keyword: Component wave

Search Result 518, Processing Time 0.031 seconds

Design and Implementation of 5G mmWave LTE-TDD HD Video Streaming System for USRP RIO SDR (USRP RIO SDR을 이용한 5G 밀리미터파 LTE-TDD HD 비디오 스트리밍 시스템 설계 및 구현)

  • Gwag, Gyoung-Hun;Shin, Bong-Deug;Park, Dong-Wook;Eo, Yun-Seong;Oh, Hyuk-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.445-453
    • /
    • 2016
  • This paper presents the implementation and design of the 1T-1R wireless HD video streaming systems over 28 GHz mmWave frequency using 3GPP LTE-TDD standard on NI USRP RIO SDR platform. The baseband of the system uses USRP RIO that are stored in Xilinx Kintex-7 chip to implement LTE-TDD transceiver modem, the signal that are transceived from USRP RIO up or down converts to 28 GHz by using self-designed 28 GHz RF transceiver modules and it is finally communicated HD video data through self-designed $4{\times}8$ sub array antennas. It is that communication method between USRP RIO and Host PC use PCI express ${\times}4$ to minimize delay of data to transmit and receive. The implemented system show high error vector magnitude performance above 25.85 dBc and to transceive HD video in experiment environment anywhere.

Hydrodynamic Analysis of Submerged Floating Tunnel Structures by Finite Element Analysis (유한요소해석을 통한 해중터널의 유체동역학 해석)

  • Kim, Seungjun;Park, Woo-Sun;Won, Deok-Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.955-967
    • /
    • 2016
  • As transportation systems for connecting lands and islands, oversea long-span bridges, underwater tunnels, and immersed tunnels have been mainly used so far. Submerged floating tunnels (SFTs) moored under specific water depth are one of the newest oversea transportation system. Compared to other existing systems, the new system requires relatively less construction cost and time. But, there is still no construction example. For reasonable design of the tunnel and mooring lines the rational structural analysis should be firstly performed. Unlike common transportation structures, the submerged tunnels are mainly affected by the wave, vary irregular excitation component. So, the analysis scheme might be difficult because of the characteristics of the submerged structures. This study aims to suggest the rational global performance analysis methodology for the submerged tunnels. Using ABAQUS the dynamic response of the experimental models studied by KIOST (2013) was investigated considering regular waves. By comparing the simulation results with the experimental results, the feasibility of the numerical simulation was verified. Using the suggested method, the effects of initial inclination of the tethers and draft of the tunnel on the dynamic behavior were studied. In addition, dynamic response of a SFT under the irregular wave was examined.

Evaluation of Near Subsurface 2D Vs Distribution Map using SPT-Uphole Tomography Method (SPT-업홀 토모그래피 기법을 이용한 지반의 2차원 전단파 속도 분포의 도출)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.143-155
    • /
    • 2006
  • SPT-Uphole tomography method was introduced for the evaluation of near subsurface shear wave velocity (Vs) distribution map. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole tomography method was performed at the weathered soil site where several boring data with SPT-N values are available, and the feasibility of proposed method was verified in the field.

Influence of Incidence Direction of Seismic Wave on the Probabilistic Seismic Fragility Assessment of Bridges (교량의 확률론적 지진취약도에 대한 지진파의 입사방향성의 영향)

  • Sina Kong;Yeeun Kim;Sinith Kung;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.151-162
    • /
    • 2024
  • As the incidence direction of ground motion (or seismic wave) changes, the seismic response of the structure will also change according to that direction. In order to analyze the effect of the seismic response of the example bridge according to the direction of incidence of ground motion, the acceleration response spectra (Sa-T1) corresponding to the 1-second period obtained for various angles of incidence were obtained. Using Sa-T1, 40 sets of orthogonal pairs of horizontal component seismic waves corresponding to 5 types of percentiles were generated. Seismic vulnerability analysis of the bridge piers was performed by obtaining the seismic response of an example bridge according to the direction of incidence of ground motion. By analyzing the seismic vulnerability analysis of seismic waves corresponding to five types of percentiles, it was found that the median value of the seismic vulnerability curve differs by about 1.2 to 2.6 times depending on the incident direction of the seismic wave. In other words, depending on the incidence direction of seismic waves, the degree of damage to the bridge structure can vary by about 1.2 to 2.6 times.

Measurement of Turbulence Properties at the Time of Flow Reversal Under High Wave Conditions in Hujeong Beach (후정해변 고파랑 조건하에서 파랑유속 방향전환점에서 발생하는 난류성분의 측정)

  • Chang, Yeon S.;Do, Jong Dae;Kim, Sun-Sin;Ahn, Kyungmo;Jin, Jae-Youll
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.206-216
    • /
    • 2017
  • The temporal distribution of the turbulence kinetic energy (TKE) and the vertical component of Reynolds stresses ($-{\bar{u^{\prime}w^{\prime}}}$) was measured during one wave period under high wave energy conditions. The wave data were obtained at Hujeong Beach in the east coast of Korea at January 14~18 of 2017 when an extratropical cyclone was developed in the East Sea. Among the whole thousands of waves measured during the period, hundreds of regular waves that had with similar pattern were selected for the analysis in order to give three representing mean wave patterns using the ensemble average technique. The turbulence properties were then estimated based on the selected wave data. It is interesting to find out that $-{\bar{u^{\prime}w^{\prime}}}$ has one clear peak near the time of flow reversal while TKE has two peaks at the corresponding times of maximum cross-shore velocity magnitudes. The distinguished pattern of Reynolds stress indicates that vertical fluxes of such properties as suspended sediments may be enhanced at the time when the horizontal flow direction is reversed to disturb the flows, supporting the turbulence convection process proposed by Nielsen (1992). The characteristic patterns of turbulence properties are examined using the CADMAS-SURF Reynolds-Averaged Navier-Stokes (RANS) model. Although the model can reasonably simulate the distribution of TKE pattern, it fails to produce the $-{\bar{u^{\prime}w^{\prime}}}$ peak at the time of flow reversal, which indicates that the application of RANS model is limited in the prediction of some turbulence properties such as Reynolds stresses.

An Efficient Channel Sounding Method for WPAN System (무선 PAN 시스템을 위한 효율적인 채널 사운딩 기법)

  • Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.9-14
    • /
    • 2008
  • In this paper, we propose the channel sounding scheme which is made for ideal communication between some application as well as the short distance of high speed data transmission in MIMO-OFDM system for Wireless PAN. This method is able to perceive the duration of the impulse response through the delaying of power delay profile, modeled a power delay profile which has an attenuate characteristic, and obtained the coefficient of channel response by ML (maximum likelihood). Through the amplitudes, phases and delays associated with each multipath component which were acquired from this channel sounding scheme, we can describe the wave propagation characteristics of channels between the transmitter and receiver so that the receiver could enhance not only the reliability but also the ability of communication link.

  • PDF

A Novel Epsilon Near Zero Tunneling Circuit Using Double-Ridge Rectangular Waveguide

  • Kim, Byung-Mun;Son, Hyeok-Woo;Hong, Jae-Pyo;Cho, Young-Ki
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.1
    • /
    • pp.36-42
    • /
    • 2014
  • In this paper, an epsilon near zero (ENZ) tunneling circuit using a double-ridge rectangular waveguide (RWG) is proposed for the miniaturization of a waveguide component. The proposed ENZ channel and is located in the middle of the input-output RWG (IORWG). The ratio of the height to the width of the channel waveguide is very small compared to the IORWG. By properly adjusting the ridge dimensions, the tunneling frequency of the proposed ENZ channel can be lowered to near the cut-off frequency of the IORWG. For the proposed ENZ tunneling circuit, the approach adopted for extracting the effective permittivity, effective permeability;normalized effective wave impedance, and propagation constant from the simulated scattering parameters was explained. The extracted parameters verified that the proposed channel is an ENZ channel and electromagnetic energy is tunneling through the channel. Simulation and measurement results of the fabricated ENZ channel structure agreed.

New Configuration of a PLDRO with an Interconnected Dual PLL Structure for K-Band Application

  • Jeon, Yuseok;Bang, Sungil
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.138-146
    • /
    • 2017
  • A phase-locked dielectric resonator oscillator (PLDRO) is an essential component of millimeter-wave communication, in which phase noise is critical for satisfactory performance. The general structure of a PLDRO typically includes a dual loop of digital phase-locked loop (PLL) and analog PLL. A dual-loop PLDRO structure is generally used. The digital PLL generates an internal voltage controlled crystal oscillator (VCXO) frequency locked to an external reference frequency, and the analog PLL loop generates a DRO frequency locked to an internal VCXO frequency. A dual loop is used to ease the phase-locked frequency by using an internal VCXO. However, some of the output frequencies in each PLL structure worsen the phase noise because of the N divider ratio increase in the digital phase-locked loop integrated circuit. This study examines the design aspects of an interconnected PLL structure. In the proposed structure, the voltage tuning; which uses a varactor diode for the phase tracking of VCXO to match with the external reference) port of the VCXO in the digital PLL is controlled by one output port of the frequency divider in the analog PLL. We compare the proposed scheme with a typical PLDRO in terms of phase noise to show that the proposed structure has no performance degradation.

An Experimental Study on the Characteristics of Rectangular Supersonic Jet on a Flat Plate

  • Kwak, Ji-Young;Lee, Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.324-331
    • /
    • 2016
  • The present study focuses on the characteristics of a supersonic jet flowing from a rectangular nozzle exit on a flat plate. Flow visualization techniques using schlieren and kerosene-lampblack tracing are utilized to investigate shock reflection structures and boundary-layer separations over a flat plate. Wall pressure measurements are also carried out to quantitatively analyze the flow structures. All observations are repeated for multiple jet flow boundary conditions by varying the flap length and nozzle pressure ratio. The experimental results show that the jet flow structures over the flat plate are highly three-dimensional with strong bleeding flows from the plate sides, and that they are sensitive to plate length and nozzle pressure ratio. A multi-component force measurement device is also utilized to observe the characteristics of the jet flow thrust vectoring over the plate. The maximum thrust deflection angle of the jet is about $8^{\circ}$, demonstrating the applicability of thrust vector control via a flat plate installed at the nozzle exit.

Development of Phased Array Ultrasonic Testing Technique for Nuclear Power Plant Cast Piping Weld (원자력발전소 주조 배관 용접부 위상배열 초음파검사 기술 개발)

  • Yoon, Byungsik;Yang, Seunghan;Kim, Yongsik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • Cast austenitic stainless steel(CASS) is used in the primary cooling piping system of nuclear power plant for it's relative low cost, corrosion resistance and easy of welding. However, the coarse-grain structure of cast austenitic stainless steel can strongly affect the inspectability of ultrasonic testing. The major problems encountered during inspection are beam skewing, high attenuation and high background noise of CASS component. So far, the best inspection performance involving CASS components have been achieved using low frequency TRL(Transmitter/Receiver side-by-side L wave) angle beam probe. But TRL technique could not detect shallow defect and it contains an uncertainty for sizing capability. Currently, most of researchers are studying to overcome these challenge issue. In this study, low-frequency phased array TRL technique used to detect and sizing the flaws in CF8A cast austenitic stainless steel.As conclusion, we could detect and size not only axial flaw but also circumferential flaw using low frequency phased array technique.

  • PDF