• Title/Summary/Keyword: Complex vector

Search Result 622, Processing Time 0.026 seconds

REAL HYPERSURFACES WITH ∗-RICCI TENSORS IN COMPLEX TWO-PLANE GRASSMANNIANS

  • Chen, Xiaomin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.975-992
    • /
    • 2017
  • In this article, we consider a real hypersurface of complex two-plane Grassmannians $G_2({\mathbb{C}}^{m+2})$, $m{\geq}3$, admitting commuting ${\ast}$-Ricci and pseudo anti-commuting ${\ast}$-Ricci tensor, respectively. As the applications, we prove that there do not exist ${\ast}$-Einstein metrics on Hopf hypersurfaces as well as ${\ast}$-Ricci solitons whose potential vector field is the Reeb vector field on any real hypersurfaces.

FRACTIONAL FIELD WITH STANDARD FRACTIONAL VECTOR CROSS PRODUCT

  • MANISHA M. KANKAREJ;JAI PRATAP SINGH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.811-819
    • /
    • 2023
  • In this research we have used the definition of standard fractional vector cross product to obtain fractional curl and fractional field of a standing wave, a travelling wave, a transverse wave, a vector field in xy plane, a complex vector field and an electric field. Fractional curl and fractional field for a complex order are also discussed. We have supported the study with calculation of impedance at γ = 0, 0 < γ < 1, γ = 1. The formula discussed in this paper are useful for study of polarization, reflection, impedance, boundary conditions where fractional solutions have applications.

The Expressions of Vector Gravity and Gravity Gradient Tensor due to an Elliptical Disk (타원판에 의한 벡터 중력 및 중력 변화율 텐서 반응식)

  • Hyoungrea Rim
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.51-56
    • /
    • 2024
  • In this paper, the vector gravity and gravity gradient tensor of an elliptical disk are derived. The vector gravity of an elliptical disk is defined by differentiating the gravitational potential due to the elliptical disk expressed by a double integral with respect to each axial direction. The vector gravity defined by the double integral is then transformed into a line integral of a closed curve along the elliptical disk boundary using the complex Green's theorem. Finally, vector gravity due to the elliptical disk is derived by 1D parametric numerical integration along the elliptical disk boundary. The xz, yz, zz components of the gravity gradient tensor due to the elliptical disk are obtained by differentiating the vector gravity with respect to vertical direction. The xx, yy, xy components are derived by differentiating the horizontal components of the vector gravity in the form of a double integral with respect to horizontal directions and then using the complex Green's theorem.

Complex Neural Classifiers for Power Quality Data Mining

  • Vidhya, S.;Kamaraj, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1715-1723
    • /
    • 2018
  • This work investigates the performance of fully complex- valued radial basis function network(FC-RBF) and complex extreme learning machine (CELM) based neural approaches for classification of power quality disturbances. This work engages the use of S-Transform to extract the features relating to single and combined power quality disturbances. The performance of the classifiers are compared with their real valued counterparts namely extreme learning machine(ELM) and support vector machine(SVM) in terms of convergence and classification ability. The results signify the suitability of complex valued classifiers for power quality disturbance classification.

STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT SUBMANIFOLDS IN COMPLEX SPACE FORMS

  • KI, U-HANG;KIM, SOO JIN
    • East Asian mathematical journal
    • /
    • v.36 no.3
    • /
    • pp.389-415
    • /
    • 2020
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ and R'X be the structure Jacobi operator with respect to the structure vector ξ and be R'X = (∇XR)(·, X)X for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξ𝜙 = 𝜙Rξ and at the same time R'ξ = 0, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature ${\bar{r}}$ of M holds ${\bar{r}}-2(n-1)c{\leq}0$.

REAL HYPERSURFACES OF TYPE B IN COMPLEX TWO-PLANE GRASSMANNIANS RELATED TO THE REEB VECTOR

  • Lee, Hyun-Jin;Suh, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.551-561
    • /
    • 2010
  • In this paper we give a new characterization of real hypersurfaces of type B, that is, a tube over a totally geodesic $\mathbb{Q}P^n$ in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, where m = 2n, with the Reeb vector $\xi$ belonging to the distribution $\mathfrak{D}$, where $\mathfrak{D}$ denotes a subdistribution in the tangent space $T_xM$ such that $T_xM$ = $\mathfrak{D}{\bigoplus}\mathfrak{D}^{\bot}$ for any point $x{\in}M$ and $\mathfrak{D}^{\bot}=Span{\xi_1,\;\xi_2,\;\xi_3}$.

A Study on AC Machine Modeling using Complex Vector and dq Transformation (복소 벡터와 dq 변환을 이용한 교류기 모델링에 관한 연구)

  • Hong, Sun-Ki;Park, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1601-1605
    • /
    • 2012
  • Three-phase voltage and current is applied to the three-phase alternating current motors which are commonly used in industry. Three phase variables of a, b, c are converted into d, q, 0 axis and the AC machines are modeled and analyzed. Basically the coordinate transformation or d-q transformation is used for convenience, a few steps are needed to analyze the motor performances - separating d and q components, establishing each equivalent circuit, and solving the differential equations of the circuits. In this study, a modeling technique of induction motor using complex vector is proposed and it can explain the induction motor physically. This method does not need the separating process of d and q components. With this technique, the model becomes simple, is easy to understand in physical, and can get the same results with those from the other models. These simulation results of the proposed model are compared with them for the conformation of the proposed method.

Real Hypersurfaces with k-th Generalized Tanaka-Webster Connection in Complex Grassmannians of Rank Two

  • Jeong, Imsoon;Lee, Hyunjin
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.525-535
    • /
    • 2017
  • In this paper, we consider two kinds of derivatives for the shape operator of a real hypersurface in a $K{\ddot{a}}hler$ manifold which are named the Lie derivative and the covariant derivative with respect to the k-th generalized Tanaka-Webster connection ${\hat{\nabla}}^{(k)}$. The purpose of this paper is to study Hopf hypersurfaces in complex Grassmannians of rank two, whose Lie derivative of the shape operator coincides with the covariant derivative of it with respect to ${\hat{\nabla}}^{(k)}$ either in direction of any vector field or in direction of Reeb vector field.

ANTI-LINEAR INVOLUTIONS ON A G-VECTOR BUNDLE

  • Kim, Sung-Sook;Shin, Joon-Kook
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.211-216
    • /
    • 1999
  • We study the anti-linear involutions on a real algebraic vector bundle with bundle with a compact real algebraic group action.

  • PDF