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ON BOUNDEDNESS FOR COMPLEX VALUED
FUNCTIONS ON THE p-ADIC VECTOR SPACE

MiIN-Soo KiM AND JIN-Wo0O SON

ABSTRACT. In this paper, we prove sufficient conditions of bound-
edness of maximal operators on the p-adic vector space. We also
consider weighted Hardy-Littlewood averages on the p-adic vector
space.

1. Introduction and preliminaries

The p-adic numbers Q,, p a prime, is constructed by completing the
rational numbers with respect to a non-Archimedean absoclute value.
These numbers and their finite algebraic extensions are locally compact,
totally disconnected, and nondiscrete. For a somewhat more leisurely
treatment of the construction of p-adic numbers, consult Gouvéa [2]. p-
adic analysis is an area of mathematics that has gained a large progress
in recent years because, apart from its great role from the mathematical
point of view, it turns out to be a useful tool in unexpected fields such
as theoretical physics. Fundamental results about the p-adic theory of
physical problems can be found in [7] and [8] (see also the references
therein).

In this paper, we consider the boundedness of maximal operators and
weighted Hardy-Littlewood averages on the p-adic vector space. These
are distinctly different from those on real numbers and complex numbers
due to the nature of the underlying topology. For example, smooth
functions are those which are locally constant; differentiability plays no
role.

For a more complete introduction to the p-adic numbers, see [2] and

8].
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Here we will outline what we need. Let Q) be the vector space of all
n-tuples of elements of Q, consists of points x = (z1,...,7,) € Q. The
p-adic norm on Q is

Jall = max fedlp

This is easily seen to be non—Archlmedean property

|+ yl| < max({lz]], ||y]])
for z,y € Qp. Also, we say that z,y € Q) are congruent modulo p”, and
write ||z — y|| < p7, if |z; — yilp, < p” for each i =1,...,n. For v € Z,
we denote by B’(a) the ball of radius p” with the center at the point
a € Qp and by S7(a) its boundary (sphere), respectively:

Bi(a)={z € Qy|llz—a| <p"}
and
={z e Q| |z~ all=p"} = Bj(a) \ Bj_(a).
For a = 0 we set B7}(0) = B} and S}(0) = S7. The Haar measure dz;
(i=1,...,n)onQy is extended to an invariant measure dz = dz; - - - dz,,

on Q7 in the standard way. Its normalization is fixed by taking the Haar
measure of Bf, the set of n-dimensional p-adic integers, as equal to 1:

vol(By) = / dx =1.
o

It is now straightforward to calculate the measure of any n-ball and also
of n-sphere from vol(Bj) =1 (see [1], [5] and [7]).

We say that f € Lj (QF) is integrable on Qp (improper integral) if
there exists

A}gnoo f(x)dx = hm Z / f(x)dz.
—oco<y<N

This limit is called an integral (improper) of the function f on Q" and it

is denoted by an z)dz so that an 2)dr =3 <o Son f s z)dz.

DEFINITION 1. (1) Let f(z) be a complex-valued function on the p-
adic space Q. A function f is called locally-constant if for any point
x € Qp there exists [(z) € Z such that

fla+a')=fe), ||| <p'®.
For the set of locally-constant functions on @} we denote by & = £(Q}).



On boundedness for complex valued functions 633

(2) A function f € £(Qp) is called test function on Qj if its support
is compact on Q. Let us denote by D = D(Q}) the set of test functions

on Qp.
A nonzero p-adic number o € Q, with |a|, = p~7 may uniquely be

written in the form -
a=Y oyt
k=v

where 0 < o, < p—1 and o, # 0. The standard additive character x,
for o given by the above form is defined by

Hl:=17 exp(2miagp®), |alp > 1,
Xp(a) =
1, lalp, < 1.

Let ¢ € D. Its p-adic Fourier-transform Flp] = ¢ is defined by the
formula
70 = | ol newis, €ca)
P
where xp((§, ) = xp(&121) - - - xp(€nzn) and (£, z) is the scalar product
of vectors. The p-adic Fourier-transform ¢ — & is the linear isomor-
phism from D onto D, and also the inversion formula

o) = [ xpl~{6aNBEO)de
B

for the p-adic Fourier-transform is valid. It gives the inverse mapping of

the p-adic Fourier-transform ¢ of a test function ¢ on Q (see {1] and [7]).

Let us introduce in D(Q}) a canonical d-sequence 6, (z) = p""Q(p"||z||)

and a canonical 1-sequence Ay (z) = Q(p~7||z|)) for v € Z and z € Q},

where (t) the step function is 1if 0 <# <1 and 0if¢ > 1.

PROPOSITION 2. [5] For all v € Z,

A, =0,
DEFINITION 3. (1) Let ¢ € D. Then there exists [ € Z, such that
o(z+2') = o(z),
where ¢’ € Bf* and € Q. The largest one of such numbers [ = I(y) is
called the parameter of constancy of a function ¢.

(2) Let us denote by D,ly = Dﬁ,((@g) the set of test functions with
support in the ball BY and with parameter of constancy > .

LEMMA 4. (8] Let ¢ € D.(Qp). Then $ € D2 (Qp).
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THEOREM 5. [8] The Fourier-transform ¢ — @ is the linear isomor-
phism from D onto D, and the Parseval-Steklov equalities are valid:

J

/Q (@)D (2)ds = /(Q By (z)dz,

I3 n
P P

@i = [ Gyl

and

where @, € D.

2. The p-adic bounded function on p-adic vector space

For every ¢ € ny, the canonical coverings of B lead us to have the
form

pla)= Y ea)li(z-a}) - Dy(an - ap)

1<v<pn(=0)
- Y w@Ae-a),
1<v<pr(v—D
where z € Q) and @’ = (af, .. .,a;) € B}, which does not depend on ¢

(see [4, p.89, (5.2)]). Here Aj(z — av) is the characteristic function of
the ball B*(a”). By Lemma 4, the function ¢ can be expanded in the
form

o= Y Ba)A i —a}) - Dy(En —ap)

1§v§p"(’7“l)
= > Fa)A,E—a),
1<u<pnv—h

where £ € Q7. Now, we easily see that
P

Flo(z —a”)|(§) = /Q e(x)xp((§, T + a®))dz = xp((§, a®)) F o] (§)-
P

Applying the above equation and Proposition 2, we can readily show

that every function ¢ € Dl7 is represented in the form

p@)= Y Fa)x((z,a")i(z)
1<uLpniy=h)

for some a” € B";, which does not depend on ¢.
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Let K be a compact subset of Qf, and C(K) the space of continuous
complex valued functions defined on K with the norm

1l = max |f(z)].

Note that for any compact K C Qj the measure dz defines a positive
linear continuous functional on C(K) by the formula [, f(z)dz, f €
C(K).

Therefore we obtain the following:

LEMMA 6. Let M be any countable everywhere dense set in Qp and
let

T ={ > el ), rs“eM,me@z}

v—finite
be the set of trigonometrical polynomials. Then

1. 7 is dense in C(K).
2. T is dense in L*(K).

PROOF. For the proof, we refer to [8] and [4]. O
LEMMA 7. [5] Let 1 <r < oo. Then

/B lz]"dz = p? (1= p) (1 - p7TT)

B

DEFINITION 8. The maximal operator My (f) on Qj is defined by

1
Mp(f)(z,2) = m:&g’(a) :’OI(B_Q(G)S/B;L(Q) |f(y)|dy,
Izl —t <p™7

where z,z € Qp and 2 # 0 (see [4]).
Note that
vol(B(0)) = [ dy=p
Bnr

y

THEOREM 9. Let B} and B’;, be balls of radius p",p" respectively
with center at 0 € Qy, and let 1 < r < co. Then

(1) The maximal operator M, is bounded from C(BY) into L" (B} x
B;L,). That is,

1
iy (14 Ly (L4 1 1—p™™ \~
”Mpf”Lr(ngB:,) < prOH+Y G43) (w) M fllesn)-
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(2) The function M, is bounded from L*(B?)NT into L"(BY x B),
where 1 <1 < oo. That is, there exists a constant C > 0 such that

1-p

1
1yyr(lgl T
HMpf“LT(B?XES/) < CprO A+ (43D (W) '”f”L2(Bl})

for f € L*(BT)NT.

PRrRoOF. Part 1 follows immediately from Lemma 7 and Fubini’s the-
orem, using essentially the same proof as for [4, Theorem 2.3].

For part 2, let f € LZ(BTY‘) N7 and M be any countable everywhere
dense set in Q. Since by Lemma 6,

f(z) = Z CvXp((fvax»v S QZ’ e M,
v—finite

Part 2 is essentially the same as [4, Theorem 2.4] using the fact that there
exists C' > 0 such that 3 |ey| < C(X |co]?)Y2 and 3 |e,| < C||f||L2(B;L).
g

CoROLLARY 10. Let BY, etc., be as in Theorem 9. Then the function
M, is bounded from L*(B}) into L"(B} x BI}).

PRrROOF. See [4, Corollary 2.5]. O

3. The weighted Hardy-Littlewood averages on the p-adic
vector space

A measurable complex-valued function f on Qj is said to be in
L™(Qp) (1 £ r < oo0) provided

HfHLT(Qg) = (/Qn \f(x)l"’da:) ' < 0.

P

For r = oo, L*°(Q}) is given by the set of all measurable real-valued
function f on Qf satisfying

1l .00 (@n) = esssup | f(z)| < oo,

where esssup denotes the essential supremum.
Now let O be a compact open subset of @, such as Z, or Z;f.
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DEFINITION 11. Let ¢ : O — [0,00) be a function. We define the
weighted Hardy-Littlewood average Uy f on Q) by

(Upf)(x / f(tz)

This is a p-adic version of the weighted Hardy-Littlewood average in
[9]. On the real field R, if ¢ = 1 then Uy, is just reduced to the classical
Hardy-Littlewood average U f as

1 T
=1 [ 1. azo

Let 6,(|tl, — p”) (¢t # 0) be the characteristic function of the circle S,
and let f € LL (Q,). Then one finds that

o, fy)dy = /U s, FWdy = p"(Us f)(p™")

YEZ
and

/f Jyll~ "dy—z/ F o)

YEZ

EXAMPLE 1. Let fs(z) = ||z]*~! for Res > 0 and %(t) = log|1/¢t|,
(t # 0). Then

- - _1(p—1)logp
Uss)la) = ol [ 1o togL/tdt = /ol |
(Uyfs) [ ol b T
Here we have used the equality

S

Zw o _1)

For s # s = lzfg”; with k € Z, the Uy f is defined by means of analytical

continuation.

DEFINITION 12. For f € LIOC(B,’;), we denote by fB:; the average of
f over B,

1 1
n=——— de = — d
1= caitBy Jy, T = g [ F@e
v Y
EXAMPLE 2. Let fs(z) = ||z||*~™, where s € C and Res > 0. Then
fer =p"* (A - pT) (1 —p )7L
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DEFINITION 13. A locally integrable function f(z) on Q} has p-adic
bounded mean oscillation, f € BMO (see {4]) if one has

1
171 = e iy |, 1) = Jaslde < oo

where the supremum is taken over a ball B} of Q.

This notion was introduced by John and Nirenberg on the Euclidean
space (cf. [9]).

Clearly, the bound || f||« in Definition 13 is the BMO norm of f. Be-
cause the constant functions have BMO norm zero, we identity f € BMO
with f+ constant, and we view BMO as subset of L (K)/{constant},
where K is a compact subset of Qp.

THEOREM 14. Let ¢ : Z; — [0,00) be a function. Suppose that
fZ; P(t)dt < co. Then

1. Uyf is bounded from L"(Qp) into L™ (Qp).
2. Uy f is bounded from BMO into BMO.

Proor. By Minkowski’s inequality, one sees that
Ul < [ 1£Ga00 0@t = 1 lurapy [, wit)dt
P P
Now put fZ,’f ¥(t)dt < co. Then we obtain
0o lirtagy < Wl [, (0 < oo

Thus the first part follows.
To see the second part, suppose that fzg P(t)dt < 0. If f € BMO,

then for any ball BY C Qp we use Fubini’s theorem to establish

(Upf)Bp = /Z;f (vol(lB’;) /BZ; f(tm)da:) Y(t)dt = /Z;f fenyp(t)dt

and

[ \Wah@) - Uaf)mslis < [ (/ le(tw)—fB¢|¢(t)dt>dr
Bz Bz Ly

- /z </B

<val(BIAI [ wit)i

| f(z) - fB;»Idx> P(t)dt
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which establishes the result of Part 2. O

EXAMPLE 3. Set f(z) = xp(z) (z € Qp) and 9(t) = Q(|t]p) in Defi-
nition 11. Then the following relation holds ([8, p.42, (3.1)])

Q(z) = /Q X))t = [ xo(at)dt = (Uax,)(a)

So that (Uaxp)(¢(z)) = Q(p(x)). From Fubini’s theorem by changing
the order of integration,

/B ’Y(UQXP)(‘P(I'))dIE = /Z ,, /B ! Xp(sp(z)t)dadt.

In [7], for €, € € R, the analogy of the Euler gamma and beta functions
may be defined by means of the integrals

(@) = [ el ple)dn, byled) = [l - afy

Zyp Zyp

respectively. Denote by (,(s) the local zeta function on Qy, that is,

1
6(5) = = |, el e

for Res > 0.

EXAMPLE 4. [8] For Res > 0,

1-p7t 1
/ 11 —x|§'1dm = ——]2_—8 - =
So l-p p

EXAMPLE 5. Let ¢,¢ > 0. Then using Example 4,

(e 0]
bple,€) =y p 7D / 11— 2| tdx + / 11— z|s ~'da
=1 S—y So

= (1= p7")(Gle) + G(€) — 1.

In particular, we see that (,(e) = (1 — p~¢)7! and yp(e) = (1 —
P~ (e).
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