Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks suck as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. Snake is designed no the basis of snake energies. Segmenting and tracking can be executed successfully by energy minimization. In this research, two new paradigms for segmentation and tracking are suggested. First, because the conventional method uses only intensity information, it is difficult to separate an object from its complex background. Therefore, a new energy and design schemes should be proposed for the better segmentation of objects. Second, conventional snake can be applied in situations where the change between images is small. If a fast moving object exists in successive images, conventional snake will not operate well because the moving object may have large differences in its position or shape, between successive images. Snakes's nodes may also fall into the local minima in their motion to the new positions of the target object in the succeeding image. For robust tracking, the condensation algorithm was adopted to control the parameters of the proposed snake model called "adaptive color snake model(SCSM)". The effectiveness of the ACSM is verified by appropriate simulations and experiments.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.6
/
pp.3208-3229
/
2017
Rectification is an essential procedure for simplifying the disparity extraction of stereo matching algorithms by removing vertical mismatches between left and right images. To support real-time stereo matching, studies have introduced several look-up table (LUT)- and computational logic (CL)-based rectification approaches. However, to support high-resolution images, the LUT-based approach requires considerable memory resources, and the CL-based approach requires numerous hardware resources for its circuit implementation. Thus, this paper proposes a multi-level accumulation-based rectification method as a simple CL-based method and its circuit implementation. The proposed method, which includes distortion correction, reduces addition operations by 29%, and removes multiplication operations by replacing the complex matrix computations and high-degree polynomial calculations of the conventional rectification with simple multi-level accumulations. The proposed rectification circuit can rectify $1,280{\times}720$ stereo images at a frame rate of 135 fps at a clock frequency of 125 MHz. Because the circuit is fully pipelined, it continuously generates a pair of left and right rectified pixels every cycle after 13-cycle latency plus initial image buffering time. Experimental results show that the proposed method requires significantly fewer hardware resources than the conventional method while the differences between the results of the proposed and conventional full rectifications are negligible.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.1
/
pp.395-413
/
2016
Image authentication is a technique aiming at protecting the integrity of digital images. Reversible image authentication has attracted much attention of researcher because it allows to authenticate tampered regions in the image and to reconstruct the stego image to its original version losslessly. In this paper, we propose a new, reversible image authentication scheme based on adaptive prediction error expansion (PEE) technique. In the proposed scheme, each image block is classified into smooth or complex regions. Then, according to the characteristic of each block, the authentication code is embedded adaptively to achieve high performance of tamper detection. The experimental results demonstrated that the proposed scheme achieves good quality of stego images. In addition, the proposed scheme has ability to reconstruct the stego image to its original version, if no modification is performed on it. Also demonstrated in the experimental results, the proposed scheme provides higher accuracy of tamper detection than state-of-the-art schemes.
Over the past decade, researchers were able to solve complex medical problems as well as acquire deeper understanding of entire issue due to the availability of machine learning techniques, particularly predictive algorithms and automatic recognition of patterns in medical imaging. In this study, a technique called transfer learning has been utilized to classify Magnetic Resonance (MR) images by a pre-trained Convolutional Neural Network (CNN). Rather than training an entire model from scratch, transfer learning approach uses the CNN model by fine-tuning them, to classify MR images into Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal control (NC). The performance of this method has been evaluated over Alzheimer's Disease Neuroimaging (ADNI) dataset by changing the learning rate of the model. Moreover, in this study, in order to demonstrate the transfer learning approach we utilize different pre-trained deep learning models such as GoogLeNet, VGG-16, AlexNet and ResNet-18, and compare their efficiency to classify AD. The overall classification accuracy resulted by GoogLeNet for training and testing was 99.84% and 98.25% respectively, which was exceptionally more than other models training and testing accuracies.
Kim, Ari;Oh, In-Hoo;Kim, Hong-Suk;Park, Seung-Ok;Park, Youngsik
Journal of the Optical Society of Korea
/
v.19
no.1
/
pp.102-111
/
2015
This paper proposes an algorithm for recovering the colors of objects from multiple near-infrared (near-IR) images. The International Commission on Illumination (CIE) color coordinates of objects are recovered from a series of gray images captured under multiple spectral near-IR illuminations using polynomial regression. The feasibility of the proposed algorithm is tested experimentally by using 24 color patches of the Color Rendition Chart. The experimental apparatus is composed of a monochrome digital camera without an IR cut-off filter and a custom-designed LED illuminator emitting multiple spectral near-IR illuminations, with peak wavelengths near the red edge of the visible band, namely at 700, 740, 780, and 860 nm. The average color difference between the original and the recovered colors for all 24 patches was found to be 11.1. However, if some particular patches with high value are disregarded, the average color difference is reduced to 4.2, and this value is within the acceptability tolerance for complex image on the display.
Purpose: In maxillofacial surgery, proper preoperative diagnosis is very important in achieving good postoperative results. Although conventional CT scans are useful for visual representations of fractures, they cannot provide direct guidance for reconstructing facial bone fractures. However, the recent technology of multislice scanning has brought many clinical benefits to CT images. Direct correlations can be made between preoperative imaging data and operative planning. The aim of the current study is to evaluate the differences between conventional CT and multidetective three-dimensional CT(3D MDCT) measurements in craniofacial deformities. Methods: From January 2005 to November 2005, MDCT scans of 41 patients were evaluated by comparing them with conventional CT scans. The 3D MDCT images were assessed and reviewed by using a simple scoring system. Results: The 3D MDCT scans offered easy interpretation, facilitated surgical planning, and clarified postoperative results in malar complex fractures, mandibular fractures, and extensive maxillofacial fractures and cranioplasty. However, 3D MDCT images were not superior to conventional CT scans in the diagnosis of blowout fractures. Conclusion: In spite of its limitations, the 3D MDCT provided additional and more comprehensive information than the conventional CT for preoperative assessment of craniofacial deformities. Therefore, the 3D MDCT can be a useful tool for diagnosis and systematic treatment planning in craniofacial skeletal deformities.
The purpose of this qualitative case study was to investigate the 'structure' of an elementary school teacher's practical knowledge concerning science experiment lessons. A female elementary teacher in the early career years participated in the study, and video recordings of her science experiment lessons as well as audio-taped interviews with her were analyzed by means of Elbaz's framework. The teacher expressed six images of science experiment lessons: 'Science is difficult', 'Experiments are dangerous', 'Experiments are accurate', 'A science experiment takes a long time', 'Science experiments are interesting', and 'Children are little scientists.' These images were supported by several principles and rules, most of which were clearly described. Among the images, principles, and rules, there were complex relationships with some working in synergy and some conflicting. In case of the image 'Children are little scientists', its subordinate principles and rules were not fully realized in the classroom. Implications for science teaching reform and science education research were discussed.
In this paper, we present a snake-based scheme for contour tracking of objects in stereo image sequences. We address the problem by managing the insertion of new points and deletion of unnecessary points to better describe and track the object's boundary. In particular, our method uses more points in highly curved parts of the contour, and fewer points in less curved parts. The proposed algorithm can successfully define the contour of the object, and can track the contour in complex images. Furthermore, we tested our algorithm in the presence of partial object occlusion. Performance of the proposed algorithm has been verified by simulation.
This paper presents a modified geometric active contour model or edge detection and segmentation of computed tomography(CT) scan images. The method is based on the level setup approach developed by Osher and Sethian and the modeling of propagation fronts with curvature dependent speeds by Malladi. Based on above algorithms, the geometric active contour is obtained through a particular level set of hypersurface lowing along its gradient force and curvature force. This technique retains the attractive feature which is topological and geometric flexibility of the contour in recovering objects with complex shapes and unknown topologies. But there are limitations in this algorithm which are being not able to separate the object with weak difference from neighbor object. So we use speed limitation filter to overcome those problems. We apply a 2D model to various synthetic cases and the three cases of real CT scan images in order to segment objects with complicated shapes and topologies. From the results, the presented model confirms that it attracts very naturally and efficiently to the desired feature of CT scan images.
Journal of Institute of Control, Robotics and Systems
/
v.22
no.1
/
pp.59-65
/
2016
As modern electronic devices get smaller and smaller, high-resolution, large Field-Of-View (FOV), fast, and cost-effective 3-dimensional (3-D) measurement is requested more and more. In particular, defect inspection machines using machine-vision technology nowadays require 3-D inspection as well as the conventional 2-D inspection. Phase Measuring Profilometry (PMP) is one of the fast non-contact 3-D shape measuring methods currently being extensively investigated in the electronic component manufacturing industry. The PMP system is well known and is successfully applied to measuring complex surface profiles with varying reflectance properties. However, for highly reflective surfaces, such as Ball Grid Arrays (BGAs), it has difficulty accurately measuring 3-D shapes. In this paper, we propose a new fast optical system that can eliminate the highly reflective saturated regions in BGA ball images. This is achieved by utilizing four Low Intensity Grating (LIG) images together with the conventional High Intensity Grating (HIG) images. Extensive experiments using BGA samples show a repeatability of under ${\pm}20um$ in standard deviation, which is suitable for most 3-D shape measurements of BGAs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.