• Title/Summary/Keyword: Complex Products and Systems

Search Result 172, Processing Time 0.034 seconds

A Genetic Algorithm with a New Repair Process for Solving Multi-stage, Multi-machine, Multi-product Scheduling Problems

  • Pongcharoen, Pupong;Khadwilard, Aphirak;Hicks, Christian
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.3
    • /
    • pp.204-213
    • /
    • 2008
  • Companies that produce capital goods need to schedule the production of products that have complex product structures with components that require many operations on different machines. A feasible schedule must satisfy operation and assembly precedence constraints. It is also important to avoid deadlock situations. In this paper a Genetic Algorithm (GA) has been developed that includes a new repair process that rectifies infeasible schedules that are produced during the evolution process. The algorithm was designed to minimise the combination of earliness and tardiness penalties and took into account finite capacity constraints. Three different sized problems were obtained from a collaborating capital goods company. A design of experimental approach was used to systematically identify that the best genetic operators and GA parameters for each size of problem.

How Do Bacteria Maximize Their Cellular Assets?

  • Kim, Juhyun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.478-484
    • /
    • 2021
  • Cellular resources including transcriptional and translational machineries in bacteria are limited, yet microorganisms depend upon them to maximize cellular fitness. Bacteria have evolved strategies for using resources economically. Regulatory networks for the gene expression system enable the cell to synthesize proteins only when necessary. At the same time, regulatory interactions enable the cell to limit losses when the system cannot make a cellular profit due to fake substrates. Also, the architecture of the gene expression flow can be advantageous for clustering functionally related products, thus resulting in effective interactions among molecules. In addition, cellular systems modulate the investment of proteomes, depending upon nutrient qualities, and fast-growing cells spend more resources on the synthesis of ribosomes, whereas nonribosomal proteins are synthesized in nutrient-limited conditions. A deeper understanding of cellular mechanisms underlying the optimal allocation of cellular resources can be used for biotechnological purposes, such as designing complex genetic circuits and constructing microbial cell factories.

Performance analysis of shape recognition in Senzimir mill control systems (젠지미어 압연기 제어시스템에서 형상인식에 관한 성능분석)

  • Lee, M.H.;Shin, J.M.;Han, S.I.;Kim, J.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.83-90
    • /
    • 2011
  • In general, 20-high Sendzimir mills(ZRM) use small diameter work rolls to provide massive rolling force. Because of small diameter of work rolls, steel strip has a complex shape mixed with quarter, edge and center waves. Especially when the shape of the strip is controlled automatically, the actuator saturation occurs. These problems affect the productivity and quality of products. In this paper, the problems in automatic shape control of ZRM were analyzed. In order to evaluate the problems for the automatic shape control in ZRM, recognition performance was analyzed by comparing the measured shape and the recognized shape. The actuator positions by the shape recognition and the manual operation were compared. From the analysis results, the necessity of the improvement of recognition performance in ZRM is suggested.

Iron hydrolysis and lithium uptake on mixed-bed ion exchange resin at alkaline pH

  • Olga Y. Palazhchenko;Jane P. Ferguson;William G. Cook
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3665-3676
    • /
    • 2023
  • The use of ion exchange resins to remove ionic impurities from solution is prevalent in industrial process systems, including in the primary heat transport system (PHTS) purification circuit of nuclear power plants. Despite its extensive use in the nuclear industry, our general understanding of ion exchange cannot fully explain the complex chemistry in ion exchange beds, particularly when operated at or near their saturation limit. This work investigates the behaviour of mixed-bed ion exchange resin, saturated with species representative of corrosion products in a CANDU (Canadian Deuterium Uranium) reactor PHTS, particularly with respect to iron chemistry in the resin bed and the removal of lithium ions from solution. Experiments were performed under deaerated conditions, analogous to normal PHTS operation. The results show interesting iron chemistry, suggesting the hydrolysis of cation resin bound ferrous species and the subsequent formation of either a solid hydrolysis product or the soluble, anionic Fe(OH)3-.

A Systems Engineering Approach to FEED Work Process Development for Refinery Plant (시스템 엔지니어링 접근 방법에 의한 정유 플랜트의 FEED 수행 업무 프로세스 개발)

  • Kim, Sun Young;Cha, Jae-Min;Kim, Junpil;Suh, Suk-Hwan;Sur, Hwal Won
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • Refinery plant producing petroleum products from crude oil has significantly contributed to the creation of the national interests as a leading engineering industries. However, domestic Engineering Procurement Construction (EPC) companies are facing heavy competition for orders. Domestic EPC companies as EPC contractors are faced with some problems such as undertaking responsibility for FEED packages produced by other FEED companies. But domestic EPC contractors are unfamiliar to development and validation of FEED packages. It causes poor profitability and lower competitiveness of domestic companies. It is necessary for domestic companies to have capability to perform FEED activities in order to overcome these limitations instead of focusing on EPC phase after FEED phase. The systematic procedure is needed to perform the FEED activities, however, there are present difficulties on it due to the lack of experience in FEED packages development which require various engineering knowledge of chemical process, mechanics, electrics, instrumentation, civil engineering. This study has applied systems engineering method which is multi-disciplinary approach to derive and verify the solution to meet the customer's needs when the complex system is developed to task execution process development of FEED activities for refinery plant. The problems that may occur in the future were identified in advance by taking into account the various stakeholders and system context through the application of systems engineering. It helps to develop the task execution process systematically. The developed task execution process of FEED activities is planned to make effectiveness verified by engineering professionals experienced in FEED and continually enhance this process by field application.

Parallel Bayesian Network Learning For Inferring Gene Regulatory Networks

  • Kim, Young-Hoon;Lee, Do-Heon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.202-205
    • /
    • 2005
  • Cell phenotypes are determined by the concerted activity of thousands of genes and their products. This activity is coordinated by a complex network that regulates the expression of genes. Understanding this organization is crucial to elucidate cellular activities, and many researches have tried to construct gene regulatory networks from mRNA expression data which are nowadays the most available and have a lot of information for cellular processes. Several computational tools, such as Boolean network, Qualitative network, Bayesian network, and so on, have been applied to infer these networks. Among them, Bayesian networks that we chose as the inference tool have been often used in this field recently due to their well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. To alleviate this problem, we had developed the algorithm of MONET(MOdularized NETwork learning), which is a new method for inferring modularized gene networks by utilizing two complementary sources of information: biological annotations and gene expression. Afterward, we have packaged and improved MONET by combining dispersed functional blocks, extending species which can be inputted in this system, reducing the time complexities by improving algorithms, and simplifying input/output formats and parameters so that it can be utilized in actual fields. In this paper, we present the architecture of MONET system that we have improved.

  • PDF

A Study on analysis framework development for yield improvement in discrete manufacturing (이산 제조 공정에서의 수율 향상을 위한 분석 프레임워크의 개발에 관한 연구)

  • Song, Chi-Wook;Roh, Geum-Jong;Park, Dong-Jin
    • The Journal of Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-121
    • /
    • 2017
  • Purpose It is a major goal to improve the product yields during production operations in the manufacturing industry. Therefore, factory is trying to keep the good quality materials and proper production resources, also find the proper condition of facilities and manufacturing environment for yields improvement. Design/methodology/approach We propose the hybrid framework to analyze to dataset extracted from MES. Those data is about the alarm information generated from equipment, both measurement and equipment process value from production and cycle/pitch time measured from production data these covered products during production. We adapt a data warehousing techniques for organizing dataset, a logistic regression for finding out the significant factors, and a association analysis for drawing the rules which affect the product yields. And then we validate the framework by applying the real data generated from the discrete process in secondary cell battery manufacturing. Findings This paper deals with challenges to apply the full potential of modeling and simulation within CPPS(Cyber-Physical Production System) and Smart Factory implementation. The framework is being applied in one of the most advanced and complex industrial sectors like semiconductor, display, and automotive industry.

A Regression-Based Approach for Central Warehouse Location Problem (중앙창고 입지선정을 위한 회귀분석기반 해법)

  • Yoo, Jae-Wook;Lee, Dong-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.2
    • /
    • pp.57-65
    • /
    • 2009
  • In continuous review inventory model, (${\varrho}$, ${\gamma}$) system, order quantity(${\varrho}$) and reorder point(${\gamma}$) should be determined to calculate inventory-related cost that consists of setup, holding, and penalty costs. The procedure to obtain the exact value of ${\varrho}$ and ${\gamma}$ is complex. In this paper, a regression analysis is proposed to get the approximate inventory-related cost without the determination of ${\varrho}$ and ${\gamma}$ in the case that the standard deviation(${\sigma}$) of the lead time demand is small or that the mean(${\mu}$) of the lead time demand is proportional to ${\sigma}$. To save inventory-related cost, central warehouses with (${\varrho}$, ${\gamma}$) system can be built. Central warehouse can provide some stores with products with the consideration of the tradeoff between inventory-related cost and transportation cost. The number and the location of central warehouses to cover all the stores are determined by a regression-based approach. The performance of the proposed approach is tested by using some computational experiments.

A study on the audio/video integrated control system based on network

  • Lee, Seungwon;Kwon, Soonchul;Lee, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • The recent development of information and communication technology is also affecting audio/video systems used in industry. The audio/video device configuration system changes from analog to digital, and the network-based audio/video system control has the advantage of reducing costs in accordance with system operation. However, audio/video systems released on the market have limitations in that they can only control their own products or can only be performed on specific platforms (Windows, Mac, Linux). This paper is a study on a device (Network Audio Video Integrated Control: NAVICS) that can integrate and control multiple audio / video devices with different functions, and can control digitalized audio / video devices through network and serial communication. As a result of the study, it was confirmed that individual control and integrated control were possible through the protocol provided by each audio/video device by NAVICS, and that even non-experts could easily control the audio/video system. In the future, it is expected that network-based audio/video integrated control technology will become the technical standard for complex audio/video system control.

Performance Assessment of Linear Motor for High Speed Machining Center (고속 HMC 이송계의 운동 특성 평가)

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.158-161
    • /
    • 2003
  • Recently, the evolution in production techniques (e.g. high-speed milling), the complex shapes involved in modem production design, and the ever increasing pressure for higher productivity demand a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. And also machine tools of multi functional and minimized parts are increasingly required as demand of higher accurate in some fields such as electronic and optical components etc. The accuracy and the productivity of machined parts are natural to depend on the linear system of machine tools. The complex workpiece surfaces encountered in present-day products and generated by CAD systems are to be transformed into tool paths for machine tools. The more complex these tool paths and the higher the speed requirements, the higher the acceleration requirements are needed to the machine tool axes and the motion control system, and the more difficult it is to meet the requirements. The traditional indirect drive design for high speed machine tools, which consists of a rotary motor with a ball-screw transmission to the slide, is limited in speed, acceleration, and accuracy. The direct drive design of machine tool axes. which is based on linear motors and which recently appeared on the market. is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, no mechanical limitations on acceleration and velocity and mechanical simplicity. Therefore performance tests were carried out to machine tool axes based on linear motor. Especially, dynamic characteristics were investigated through circular test.

  • PDF