DOI QR코드

DOI QR Code

Iron hydrolysis and lithium uptake on mixed-bed ion exchange resin at alkaline pH

  • Olga Y. Palazhchenko (University of New Brunswick) ;
  • Jane P. Ferguson (University of New Brunswick) ;
  • William G. Cook (University of New Brunswick)
  • Received : 2023.01.17
  • Accepted : 2023.06.19
  • Published : 2023.10.25

Abstract

The use of ion exchange resins to remove ionic impurities from solution is prevalent in industrial process systems, including in the primary heat transport system (PHTS) purification circuit of nuclear power plants. Despite its extensive use in the nuclear industry, our general understanding of ion exchange cannot fully explain the complex chemistry in ion exchange beds, particularly when operated at or near their saturation limit. This work investigates the behaviour of mixed-bed ion exchange resin, saturated with species representative of corrosion products in a CANDU (Canadian Deuterium Uranium) reactor PHTS, particularly with respect to iron chemistry in the resin bed and the removal of lithium ions from solution. Experiments were performed under deaerated conditions, analogous to normal PHTS operation. The results show interesting iron chemistry, suggesting the hydrolysis of cation resin bound ferrous species and the subsequent formation of either a solid hydrolysis product or the soluble, anionic Fe(OH)3-.

Keywords

Acknowledgement

Funding for this work was mainly provided through the federal Student Work Placement Program (SWPP). The CANDU Owners Group (COG) and Canadian Nuclear Laboratories are thanked for funding initial R&D work that inspired this project. Purolite is thanked for providing all resin free-of-charge. Ms. Fiona Baker and Ms. Blerina Vata are thanked for assisting with experiments and performing UV-Vis analysis, and Mr. Ben Loder and Mr. Steven Cogswell are thanked for performing IC and SEM analysis, respectively. The authors are also grateful to Dr. Craig Stuart for input and helpful discussions.

References

  1. W. Cook, D. Lister, Chapter 15 - chemistry in CANDU process systems, in: Essential CANDU, UNENE, 2014.
  2. D. Lister, W. Cook, Chapter 14 - nuclear plant materials and corrosion, in: Essential CANDU, UNENE, 2014.
  3. O. Palazhchenko, W. Cook, A. Martin, D. Taylor, Heat transfer add-on to the UNB-CNER CANDU-6 PHT system material transport model, J. Power Plant Chem. 22 (6) (2020) 262-273.
  4. O. Palazhchenko, W. Cook, A. Martin, J. Lennox, Update on predicting RIHT using the UNB-CNER CANDU-6 PHT system model, J. Power Plant Chem. 23 (3) (2021) 122-131.
  5. R.E. Mesmer, D.L. Herting, Thermodynamics of ionization of D2O and D2PO4-, J. Solut. Chem. 7 (12) (1978) 901-913. https://doi.org/10.1007/BF00645300
  6. J. Crittenden, R. Trussell, D. Hand, K. Howe, G. Tchobanoglous, 16. Ion exchange, in: MWH's Water Treatment: Principles and Design, third ed., John Wiley & Sons, Inc., 2012, pp. 1277-1279.
  7. S.D. Faust, O.M. Aly, Removal of scale-forming substances, in: Chemistry of Water Treatment, Butterworth Publishers, Woburn, MA, 1983, pp. 424-425.
  8. L. Qui, A. Snaglewski, Lithium adsorption on magnetite, lepidocrocite, and maghemite at elevated temperatures, Nucl. Sci. Eng. 179 (2015) 199-210. https://doi.org/10.13182/NSE13-93
  9. S. Suryanarayan, D. Jain, Lithium control during normal operation, in: International Conference on Water Chemistry of Nuclear Reactor Systems (Nuclear Plant Chemistry Conference), 2010. Quebec City.
  10. H. Cady, R. Connick, The determination of the formulas of aqueous ruthenium (III) species by means of ion-exchange resin: Ru+, RuCl2+, and RuCl2, J. Am. Chem. Soc. 80 (11) (1959) 2646-2652.
  11. E. Sikora, V. Hadju, G. Muranszky, K.K.I. Katona, T. Kanazawa, B. Fiser, B. Viskolcz, L. Vanyorek, Application of ion-exchange resin beads to produce magnetic adsorbents, Chem. Pap. 75 (11) (2021) 1187-1195. https://doi.org/10.1007/s11696-020-01376-y
  12. E. Tokar, A. Matskevich, M. Palamarchuk, Y.A. Parotkina, A. Egorin, Decontamination of spent ion exchange resins contaminated with iron-oxide deposits using mineral acid solutions, J. Nucl. Sci. Technol. 53 (9) (2021) 2918-2925. https://doi.org/10.1016/j.net.2021.03.022
  13. J. Sawicki, P. Sefranek, S. Fisher, Depth distribution and chemical form of iron in low cross-linked crud-removing resin beds, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 142 (1-2) (1998) 122-132. https://doi.org/10.1016/S0168-583X(98)00231-6
  14. K. Otoha, K. Izumi, T. Hayashi, Y. Morikawa, H. Murabayashi, Crud removal performance with ion exchange resins in BWR plants, J. Nucl. Sci. Technol. 33 (1) (1996) 52-61. https://doi.org/10.1080/18811248.1996.9731861
  15. W. Rudolph, M. Brooker, P. Tremaine, Raman spectroscopic investigation of aqueous FeSO4 in neutral and acidic solutions from 25 ℃ to303 ℃: inner- and outer-sphere complexes, J. Solut. Chem. 26 (8) (1997) 757-777. https://doi.org/10.1007/BF02767782
  16. J. Mehlig, R. Hulett, Spectrophotometric determination of iron with o-phenanthroline and with nitro-o-phenanthroline, Indus. Eng. Chem. Analyt. Edition 14 (11) (1942) 869-871. https://doi.org/10.1021/i560111a018
  17. D. Caldwell, R.B. Adams, Colorimetric determination of iron in water with o-phenanthroline, Am. Water Works Associat. 38 (6) (1946) 727-730. https://doi.org/10.1002/j.1551-8833.1946.tb16130.x
  18. S. Smith, D. Williams, R. Miller, Solubility of lithium carbonate at elevated temperatures, J. Chem. Eng. Data 16 (1) (1971) 74-75. https://doi.org/10.1021/je60048a022
  19. Product data sheet Purolite® NRW-100-Li [Online]. Available: www.purolite.com.
  20. Product data sheet Purolite® NRW-400 [Online]. Available: www.purolite.com.
  21. Product data sheet Purolite® NRW-3240-LiLC [Online]. Available: www.purolite.com.
  22. A.E. Harvey, J.A. Smart, E.S. Aims, Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline, Anal. Chem. 27 (1) (1955) 26-29. https://doi.org/10.1021/ac60097a009
  23. D. Barber, B. Nott, Kinetic imbalance in mixed bed ion exchange, in: Water Chemistry of Nuclear Reactor Systems 5, British Nuclear Energy Society, 1989, pp. 257-262.
  24. P. Tremaine, J. LeBlanc, The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300 ℃, J. Solut. Chem. 9 (1980) 415-442. https://doi.org/10.1007/BF00645517
  25. R.J. Lemire, U. Berner, D.A. Palmer, O. Tochiyama, C. Musikas, P. Taylor, Chemical thermodynamics of iron: Part I, in: Chemical Thermodynamics, vol. 13a, Organization for Economic Co-operation and Development (OECD), 2013, pp. 125-137.
  26. D. Miller, R. Siriwardane, D. Mcintyre, Anion structural effects on interaction of rare earth element ions with Dowex 50W X8 cation exchange resin, J. Rare Earths 36 (2018) 879-890.
  27. T. Kimura, Y. Kato, H. Takeishi, G. Choppin, Comparative study on the hydration states of Cm(III) and Eu(III) in solution and in cation exchange resin, J. Alloys Compd. 271-273 (1998) 719-722. https://doi.org/10.1016/S0925-8388(98)00194-7
  28. I. Rhee, D. Dzombak, Binary and ternary cation exchange on strong acid cation exchange resin involving Na, Mg, and Zn in single and binary backgrounds of chloride, perchlorate, and sulfate, Langmuir 15 (1999) 6875-6883. https://doi.org/10.1021/la970031g