• Title/Summary/Keyword: Complex Banach space

Search Result 44, Processing Time 0.018 seconds

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.

ON n-TUPLES OF TENSOR PRODUCTS OF p-HYPONORMAL OPERATORS

  • Duggal, B.P.;Jeon, In-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.287-292
    • /
    • 2004
  • The operator $A \; {\in} \; L(H_{i})$, the Banach algebra of bounded linear operators on the complex infinite dimensional Hilbert space $\cal H_{i}$, is said to be p-hyponormal if $(A^\ast A)^P \geq (AA^\ast)^p$ for $p\; \in \; (0,1]$. Let (equation omitted) denote the completion of (equation omitted) with respect to some crossnorm. Let $I_{i}$ be the identity operator on $H_{i}$. Letting (equation omitted), where each $A_{i}$ is p-hyponormal, it is proved that the commuting n-tuple T = ($T_1$,..., $T_{n}$) satisfies Bishop's condition ($\beta$) and that if T is Weyl then there exists a non-singular commuting n-tuple S such that T = S + F for some n-tuple F of compact operators.

  • PDF

SPECTRA OF THE IMAGES UNDER THE FAITHFUL $^*$-REPRESENTATION OF L(H) ON K

  • Cha, Hyung-Koo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 1985
  • Let H be an arbitrary complex Hilbert space. We constructed an extension K of H by means of weakly convergent sequences in H and the Banach limit. Let .phi. be the faithful *-representation of L(H) on K. In this note, we investigated the relations between spectra of T in L(H) and .phi.(T) in L(K) and we obtained the following results: 1) If T is a compact operator on H, then .phi.(T) is also a compact operator on K (Proposition 6), 2) .sigma.$_{l}$ (.phi.(T)).contnd..sigma.$_{l}$ (T) for any operator T.mem.L(H) (Corollary 10), 3) For every operator T.mem.L(H), .sigma.$_{ap}$ (.phi.(T))=.sigma.$_{ap}$ (T))=.sigma.$_{ap}$ (T)=.sigma.$_{p}$(.phi.(T)) (Lemma 12, 13) and .sigma.$_{c}$(.phi.(T))=.sigma.(Theorem 15).15).

  • PDF

A CHARACTERIZATION OF LOCAL RESOLVENT SETS

  • Han Hyuk;Yoo Jong-Kwang
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.253-259
    • /
    • 2006
  • Let T be a bounded linear operator on a Banach space X. And let ${{\rho}T}(X)$ be the local resolvent set of T at $x\;{\in}\;X$. Then we prove that a complex number ${\lambda}$ belongs to ${{\rho}T}(X)$ if and only if there is a sequence $\{x_{n}\}$ in X such that $x_n\;=\;(T - {\lambda})x_{n+1}$ for n = 0, 1, 2,..., $x_0$ = x and $\{{\parallel}x_n{\parallel}^{\frac{1}{n}}\}$ is bounded.