그래프 G = (V, E )의 L(2, 1)-labeling 은 무선통신에서 무선 기기에 할당되는 주파수를 효율적으로 사용하기 위한 최적화 문제로서 NP-complete 계열에 포함되는 문제이다. 본 연구에서는 L(2, 1)-labeling 문제에 적용 가능한 Simulated Annealing 알고리즘을 제시한 후 다양한 그래프에 제시된 알고리즘을 적용하여 그 효용성을 보이고자 한다.
An alternative way of constructing ancestral graphs, which is different from the coalescent-based approach, is proposed using population linkage disequilibrium (LD) data. The main difference from the existing method is the construction of the ancestral graphs based on variants instead of individual sequences. Therefore, the key of the proposed method is to use the order of allele ages in the graphs. Distinct from the previous age-estimation methods, allele ages are estimated from full haplotype information by examining the number of generations from the initial complete LD to the current decayed state for each two variants depending on the direction of LD decay between variants. Using a simple algorithmic procedure, an ancestral graph can be derived from the expected allele ages and current LD decay status. This method is different in many ways from previous methods, and, with further improvement, it might be a good replacement for the current approaches.
대칭성(symmetry)은 그래프의 구조와 특성을 시각적으로 표현할 때 중요한 미적 기준 중의 하나이다. 또한 대칭성을 보여주는 드로잉은 전체 그래프가 크기가 작은 부그래트들로부터 반복적으로 구성됨을 보여줌으로써 전체 그래프에 대한 이해를 쉽게 푸는 해주는 장점이 있다. 하지만 일반적인 그래프에서 기하하적 대칭성(geometric symmetry)을 탐지하는 문제는 이미 NP-complete 임이 증명되었으므로 이에 대한 연구는 평면 그래프(planar graph)의 극히 제한적인 부분집합인 트리, 외부 평면 그래프, 임베딩된 (embedded) 평면 그래프 등에 초점이 맞추어져 왔다. 본 논문에서는 평면 그래프에서의 기하학적 대칭성 문제를 연구하였다. 평면 그래프를 이중 연결 성분들로 분할한 다음 이를 각각 다시 삼중 연결 성분들로 분할하여 트리를 구성하고 축소(reduction)개념을 도입함으로써 기하학적 대칭성을 탐지하는 O(n2)시간 알고리즘을 제시하였다. 여기서 n은 그래프의 정점의 개수이다. 이 알고리즘은 평면 그래프를 최대한 대칭적으로 드로잉하는 알고리즘 개발에 이용될 수 있다.
For a simple, undirected graph G = (V, E), a perfect Roman dominating function (PRDF) f : V → {0, 1, 2} has the property that, every vertex u with f(u) = 0 is adjacent to exactly one vertex v for which f(v) = 2. The weight of a PRDF is the sum f(V) = ∑v∈V f(v). The minimum weight of a PRDF is called the perfect Roman domination number, denoted by γRP(G). Given a graph G and a positive integer k, the PRDF problem is to check whether G has a perfect Roman dominating function of weight at most k. In this paper, we first investigate the complexity of PRDF problem for some subclasses of bipartite graphs namely, star convex bipartite graphs and comb convex bipartite graphs. Then we show that PRDF problem is linear time solvable for bounded tree-width graphs, chain graphs and threshold graphs, a subclass of split graphs.
The minimum number of complete bipartite subgraphs needed to partition the edges of a graph G is denoted by b(G). A known lower bound on b(G) states that b(G) ≥ max{p(G), q(G)}, where p(G) and q(G) are the numbers of positive and negative eigenvalues of the adjacency matrix of G, respectively. When equality is attained, G is said to be eigensharp and when b(G) = max{p(G), q(G)} + 1, G is called an almost eigensharp graph. In this paper, we investigate the eigensharpness and almost eigensharpness of lexicographic products of some graphs.
Many optimization problems like domination and Steiner tree are NP-complete on chordal graphs but can be solved in polyno-mial time on doubly chordal graphs. Investigating properties of dou-bly chordal graphs probably help to design efficient algorithms for the graphs. We present some characterizations of dobly chordal graphs which are based on clique matrices and neighborhood matrics also men-tioned how a doubly perfect elimination ordering of a doubly chordal graph can be computed from the results.
We consider the problem of grouping orders into lots. The problem is modelled by a graph G = (V, E). where each node $\nu\;\in\;V$ denotes order specification and its weight $\omega(\nu)$ the orders on hand for the specification. We ran construct a lot simply from orders or single specification For a set of nodes (specifications) $\theta\;\subseteq\;V$, if the distance or any two nodes in $\theta$ is at most d, it is also possible to make a lot using orders on the nodes. The objective is to maximize the number of lots with size exactly $\lambda$. In this paper, we prove that our problem is NP-Complete when d = 2, $\lambda\;=\;3$ and each weight is 0 or 1. Moreover, it is also shown to be NP-Complete when d = 1, $\lambda\;=\;3$ and each weight is 1, 2 or 3
In this paper, the limited error tracking problem is investigated for distributed leader-following wireless sensor networks (LFWSNs), where all sensors share data by the local communications, follower sensors are influenced by leader sensors directly or indirectly, but not vice versa, all sensor nodes track a reference state that is determined by the states of all leader sensors, and tracking errors are limited. In a LFWSN, the communicating graph is mainly expressed by some complete subgraphs; if we fix subgraphs that are composed of all leaders while all nodes in complete subgraphs of followers run on the sleeping-awaking method, then the fixed leaders and varying followers topology is obtained, and the switching topology is expressed by a Markov chain. It is supposed that the measurements of all sensors are corrupted by additive noises. Accordingly, the limited error tracking protocol is proposed. Based on the theory of asymptotic boundedness in mean square, it is shown that LFWSN keeps the limited error tracking under the designed protocol.
A graph G of order n has prime cordial labeling if its vertices can be assigned the distinct labels 1, $2{\cdots}$, n such that if each edge xy in G is assigned the label 1 in case the labels of x and y are relatively prime and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In this paper, we give a complete characterization of complete graphs which are prime cordial and we give a prime cordial labeling of the closed helm ${\bar{H}}_n$, and present a new way of prime cordial labeling of $P^2_n$. Finally we make a correction of the proof of Theorem 2.5 in [12].
위치기반 인코딩을 사용하는 유전 알고리즘에서 정적 유전자 재배열이란 상관성이 높은 유전자들이 서로 인접하도록 배치하는 것을 말한다. 그것은 유전 알고리즘이 효과적으로 고품질의 스키마들을 생성하고 보존하는 데 도움을 준다. 본 논문에서는 선형의 위치기반 인코딩을 위한 정적 재배치 방법을 제안한다. 본 논문에서 제안하는 방법은 특정 문제에 한정된 정보를 사용하지 않는다는 점에서 기존의 방법들과 차이가 있다. 그것은 모든 유전자들 사이의 상관성을 계산하여 가중치가 있는 완전 그래프를 만든다. 그리고 그 그래프에서 상대적으로 가중치가 높은 간선들만 골라 냄으로써 가중치가 없는 희소 그래프로 변환한다. 끝으로 그래프 탐색을 통해 유전자 재배열을 찾는다. 여러 문제에 관한 광범위한 실험을 통해 본 논문에서 제안한 방법은 재배열을 하지 않은 유전 알고리즘에 비해 현저한 성능 향상을 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.