• Title/Summary/Keyword: Complementary switching

Search Result 53, Processing Time 0.023 seconds

A Study on User Switching Intention from Contact Center-oriented to AI Chatbot-Oriented Customer Services (컨택센터 중심에서 인공지능 챗봇 중심 고객 서비스로의 사용자 전환의도에 관한 연구)

  • Ann Seunggyu;Ahn Hyunchul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.57-76
    • /
    • 2023
  • This study analyzes the factors and effects on the users' intention to switch from contact center-oriented to AI chatbot-oriented customer services by combining Push-Pull-Mooring Model and provides insights for companies considering the adoption of AI chatbots. To test the model, we surveyed users with experience using chatbots at least once across different age groups. Finally, we analyzed 176 cases for the analysis using IBM SPSS Statistics and SmartPLS 4.0. The results of hypotheses testing rejected the hypotheses for variables of inconsistent quality and low availability of push factors and low switching cost of mooring factor while accepting the hypotheses for the tardy response of push factors and all pull factors. Therefore, these findings provide important implications for researchers and practitioners who wish to conduct research or adopt AI chatbots. In conclusion, users do not feel inconvenienced by the contact center-oriented service but also perceive high trust and convenience with AI chatbot-oriented service. However, despite low switching costs, users consider chatbots a complementary tool rather than an alternative. So, companies adopting AI chatbots should consider what features the users expect from AI chatbots and facilitate these features when implementing AI chatbots.

Evaluation of Flexible Complementary Inverters Based on Pentacene and IGZO Thin Film Transistors

  • Kim, D.I.;Hwang, B.U.;Jeon, H.S.;Bae, B.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.154-154
    • /
    • 2012
  • Flexible complementary inverters based on thin-film transistors (TFTs) are important because they have low power consumption and high voltage gain compared to single type circuits. We have manufactured flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The circuits were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. The characteristics of TFTs and inverters were evaluated at different bending radii. The applied strain led to change in voltage transfer characteristics of complementary inverters as well as source-drain saturation current, field effect mobility and threshold voltage of TFTs. The switching threshold voltage of fabricated inverters was decreased with increasing bending radius, which is related to change in parameters of TFTs. Throughout the bending experiments, relationship between circuit performance and TFT characteristics under mechanical deformation could be elucidated.

  • PDF

Evolution of Nonvolatile Resistive Switching Memory Technologies: The Related Influence on Hetrogeneous Nanoarchitectures

  • Eshraghian, Kamran
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.243-248
    • /
    • 2010
  • The emergence of different and disparate materials together with the convergence of both the 'old' and 'emerging' technologies is paving the way for integration of heterogeneous technologies that are likely to extend the limitations of silicon technology beyond the roadmap envisaged for complementary metal-oxide semiconductor. Formulation of new information processing concepts based on novel aspects of nano-scale based materials is the catalyst for new nanoarchitectures driven by a different perspective in realization of novel logic devices. The memory technology has been the pace setter for silicon scaling and thus far has pave the way for new architectures. This paper provides an overview of the inevitability of heterogeneous integration of technologies that are in their infancy through initiatives of material physicists, computational chemists, and bioengineers and explores the options in the spectrum of novel non-volatile memory technologies considered as forerunner of new logic devices.

A Study on the Interleaved Active-Clamping Forward Converter (인터리브 방식을 이용한 액티브 클램핑 포워드 컨버터에 관한 연구)

  • Jung, Jae-Yeop;Kim, Yong;Kwon, Soon-Do;Bae, Jin-Yong;Lee, Dong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.156-160
    • /
    • 2009
  • This paper presents the interleaved active-clamping ZVS(Zero Voltage Switching) forward converter, which is mainly composed of two active-clamping forward converters. Only two switches are required, and each one is the auxiliary switch for the other. The circuit complexity and cost are thus reduced. The leakage inductance of the transformer or an additional resonant inductance is employed to achieve ZVS during the dead times. The duty cycles are not limited to be equal and within 50%. The complementary switching and the resulted interleaved output inductor currents diminish the current ripple in output capacitors. Accordingly, the smaller output chokes and capacitors lower the converter volume and increase the power density. Detailed analysis and design of this new interleaved active-clamping forward converter are described.

  • PDF

Performance of Wind-Photovoltaic Hybrid Generation System

  • Oh Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.319-324
    • /
    • 2005
  • This paper reports the performance of Wind-PV(Photovoltaic) hybrid system. The output power of PV is affected by the environmental factors such as solar radiation and cell temperature. Also, the output power of wind system is generated with wind power. Integration of Wind and PV resources, which are generally complementary, usually reduce the capacity of the battery. This paper includes discussion on system reliability, power quality and effects of the randomness of the wind and the solar radiation on system design.

A 10-bit 10MS/s differential straightforward SAR ADC

  • Rikan, Behnam Samadpoor;Abbasizadeh, Hamed;Lee, Dong-Soo;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.183-188
    • /
    • 2015
  • A 10-bit 10MS/s low power consumption successive approximation register (SAR) analog-to-digital converter (ADC) using a straightforward capacitive digital-to-analog converter (DAC) is presented in this paper. In the proposed capacitive DAC, switching is always straightforward, and its value is half of the peak-to-peak voltage in each step. Also the most significant bit (MSB) is decided without any switching power consumption. The application of the straightforward switching causes lower power consumption in the structure. The input is sampled at the bottom plate of the capacitor digital-to-analog converter (CDAC) as it provides better linearity and a higher effective number of bits. The comparator applies adaptive power control, which reduces the overall power consumption. The differential prototype SAR ADC was implemented with $0.18{\mu}m$ complementary metal-oxide semiconductor (CMOS) technology and achieves an effective number of bits (ENOB) of 9.49 at a sampling frequency of 10MS/s. The structure consumes 0.522mW from a 1.8V supply. Signal to noise-plus-distortion ratio (SNDR) and spurious free dynamic range (SFDR) are 59.5 dB and 67.1 dB and the figure of merit (FOM) is 95 fJ/conversion-step.

Single-Electron Logic Cells and SET/FET Hybrid Integrated Circuits

  • Kim, S.J.;Lee, C.K.;Lee, J.U.;Choi, S.J.;Hwang, J.H.;Lee, S.E.;Choi, J.B.;Park, K.S.;Lee, W.H.;Paik, I.B.;Kang, J.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.52-58
    • /
    • 2006
  • Single-electron transistor (SET)-based logic cells and SET/FET hybrid integrated circuits have been fabricated on SOI chips. The input-output voltage transfer characteristic of the SET-based complementary logic cell shows an inverting behavior where the output voltage gain is estimated to be about 1.2 at 4.2K. The SET/FET output driver, consisting of one SET and three FETs, yields a high voltage gain of 13 and power amplification with a wide-range output window for driving next circuit. Finally, the SET/FET literal gate for a multi-valued logic cell, comprising of an SET, an FET and a constant-current load, displays a periodic voltage output of high/low level multiple switching with a swing as high as 200mV. The multiple switching functionality of all the fabricated logic circuits could be enhanced by utilizing a side gate incorporated to each SET component to enable the phase control of Coulomb oscillations, which is one of the unique characteristics of the SET-based logic circuits.

A dual-path high linear amplifier for carrier aggregation

  • Kang, Dong-Woo;Choi, Jang-Hong
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.773-780
    • /
    • 2020
  • A 40 nm complementary metal oxide semiconductor carrier-aggregated drive amplifier with high linearity is presented for sub-GHz Internet of Things applications. The proposed drive amplifier consists of two high linear amplifiers, which are composed of five differential cascode cells. Carrier aggregation can be achieved by switching on both the driver amplifiers simultaneously and combining the two independent signals in the current mode. The common gate bias of the cascode cells is selected to maximize the output 1 dB compression point (P1dB) to support high-linear wideband applications, and is used for the local supply voltage of digital circuitry for gain control. The proposed circuit achieved an output P1dB of 10.7 dBm with over 22.8 dBm of output 3rd-order intercept point up to 0.9 GHz and demonstrated a 55 dBc adjacent channel leakage ratio (ACLR) for the 802.11af with -5 dBm channel power. To the best of our knowledge, this is the first demonstration of the wideband carrier-aggregated drive amplifier that achieves the highest ACLR performance.

A Model for Performance Analysis of the Information Processing System with Time Constraint (시간제약이 있는 정보처리시스템의 성능분석 모형)

  • Hur, Sun;Joo, Kook-Sun;Jeong, Seok-Yun;Yun, Joo-Deok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.2
    • /
    • pp.138-145
    • /
    • 2010
  • In this paper, we consider the information processing system, which organizes the collected data to meaningful information when the number of data collected from multiple sources reaches to a predetermined number, and performs any action by processing the collected data, or transmits to other devices or systems. We derive an analytical model to calculate the time until it takes to process information after starting to collect data. Therefore, in order to complete the processing data within certain time constraints, we develop some design criteria to control various parameters of the information processing system. Also, we analyze the discrete time model for packet switching networks considering data with no particular arrival nor drop pattern. We analyze the relationship between the number of required packets and average information processing time through numerical examples. By this, we show that the proposed model is able to design the system to be suitable for user's requirements being complementary the quality of information and the information processing time in the system with time constraints.

A Study on the 1,700 V Rated NPT Trench IGBT Analysis by PIN Diode - PNP Transistor Model (PIN 다이오드 - PNP 트랜지스터 결합모델에 의한 1,700 V급 NPT 트랜치 IGBT의 해석에 관한 연구)

  • Lee, Jong-Seok;Kyoung, Sin-Su;Kang, Ey-Goo;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.889-895
    • /
    • 2008
  • This paper presents a comprehensive mathematical analysis and simulation of trench IGBT with the help of PIN-PNP combinational model. Since trench IGBT is characteristically influenced by PIN diode, it may be almost impossible to analyze the trench IGBT using PNP-MOS modeling methods, even PIN-MOS techniques which neglect the hole current components coming into p-base region. A new PIN-PNP complementary cooperational model is developed in order to make up the drawbacks of existing models. It would allow us to make qualitative analysis as well as simulation about switching and on-state characteristics of 1,700 V trench IGBT. Moreover, if we improve the PIN diode effects through the optimization of trench structure, trench IGBT is expected to be one of the most promising devices in the not only high-voltage but also high speed switching device field.