• 제목/요약/키워드: Compensation chamber

Search Result 51, Processing Time 0.026 seconds

A study on EPD(End Point Detection) controller on plasma teaching process (플라즈마 식각공정에서의 EPD(End Point Detection) 제어기에 관한 연구)

  • 최순혁;차상엽;이종민;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.415-418
    • /
    • 1996
  • Etching Process, one of the most important process in semiconductor fabrication, has input control part of which components are pressure, gas flow, RF power and etc., and plasma gas which is complex and not exactly understood is used to etch wafer in etching chamber. So this process has not real-time feedback controller based on input-output relation, then it uses EPD(End Point Detection) signal to determine when to start or when to stop etching. Various type EPD controller control etching process using EPD signal obtained from optical intensity of etching chamber. In development EPD controller we concentrate on compensation of this signal intensity and setting the relative signal magnitude at first of etching. We compensate signal intensity using neural network learning method and set the relative signal magnitude using fuzzy inference method. Potential of this method which improves EPD system capability is proved by experiences.

  • PDF

The Error Analysis of Leak Measurement for Pneumatic Cylinder Using Isothermal Chamber

  • Jang, Ji-Seong;Ji, Sang-Won;Kagawa, Toshiharu
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.1
    • /
    • pp.6-12
    • /
    • 2008
  • ISO pneumatic cylinder reliability test requires air leakage measurement. Air cylinder has many parts and the leakage shall be measured before, during and after endurance test, and, the leakage should smaller than the specified value. The existing measurement method needs complex operation and the calibration of leak detector, and, has to separate the testing cylinder from endurance test device, which causes the change of contact condition of seal in the cylinder. Therefore, it is hard to evaluate the air leakage during endurance test, and guarantee the reliability of the conventional measurement method. In this paper, a new method for air leakage measurement using isothermal chamber, which does not requires calibration or temperature compensation, and, can measure air leakage accurately with quite simple operations, is proposed. As a result, reliability of air leakage measurement can be improved because the proposed method does not have to separate the testing cylinder from the endurance test device for air leakage measurement. The effectiveness of the proposed method is proved by error analysis of leak measurement from experimental result.

  • PDF

A Study on Improvement on Dimensional Accuracy of SLS parts using Taguchi Method (다구찌 방법을 이용한 SLS 조형품의 치수정밀도 향상에 관한 연구)

  • Hwang, Po-Jung;Yang, Hwa-Jun;Lee, Seok-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.860-865
    • /
    • 2000
  • This Paper Proposes the test pieces of X, Y and Z axes to compensate the shape distortion of Selective Laser Sintering(SLS) parts resulting from the phase change during the sintering process. In no case of the proposed compensation test pieces of X, Y axes the accurate rates of shrinkage can be measured with the reduction of curling which is obtained from adjustment of build orientation and the formula used to get scale factors are proposed with the shrinkage rates of them. The scale factors of X, Y and Z axes are generated by building up proposed compensation test pieces. The generated scale iactors are required to satisfy the dimensional accuracy even if there are changes of the build position and the size of SLS parts in the build chamber. For this reason, it is proposed that the build positions and the size be considered to be noise factors against the compensation test pieces and a method is also proposed that scale factors be selected to robustly maintain the dimensional accuracy of SLS parts under the actual operating conditions with the application of the Taguchi Method.

  • PDF

Greenhouse Gas (CH4, CO2, N2O) Emissions from Estuarine Tidal and Wetland and Their Characteristics (온실기체 (CH4, CO2, N2O)의 하구언갯벌 배출량과 배출특성연구)

  • Kim, Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.225-241
    • /
    • 2007
  • A closed flux chamber system was used for measuring major greenhouse gas (GHG) emission from tideland and/or wetland soils in estuarine area at Saemankum, Kunsan in southwestern Korea during from months of February to June 2006. Hourly averaged GHG soil emissions were measured two to three times a day during the ebb tide hours only. Site soils were analyzed for soil parameters (temperature, pH, total organic contents, N and C contents in soil) in the laboratory. Soil GHG fluxes were calculated based on the GHG concentration rate of change measured inside a closed chamber The analysis of GHG was conducted by using a Gas Chromatography (equipped with ECD/FID) at laboratory. Changes of daily, monthly GHGs' fluxes were examined. The relationships between the GHG emissions and soil chemical contents were also scrutinized with respect to gas production and consumption mechanism in the soil. Soil pH was pH $7.47{\pm}0.49$ in average over the experimental period. Organic matter contents in sample soil was $6.64{\pm}4.98\;g/kg$, and it shows relatively lower contents than those in agricultural soils in Kunsan area. Resulting from the soil chemistry data, soil nitrogen contents seem to affect GHG emission from the tidal land surface. The tidal soil was found to be either source or sink for the major GHG during the experimental periods. The annual average of $CH_{4}\;and\;CO_{2}$ fluxes were $0.13{\pm}0.86\;mg\;m^{-2}h^{-1}\;and\;5.83{\pm}138.73\;mg\;m^{-2}h^{-1}$, respectively, which will be as a source of these gases. However, $N_{2}O$ emission showed in negative flux, and the value was $-0.02{\pm}0.66\;mg\;m^{-2}h^{-1}$, and it implies tidal land surface act as a sink of $N_{2}O$. Over the experimental period, the absolute values of gas fluxes increased with soil temperature in general. Averages of the ambient gas concentration were $86.8{\pm}6.\;ppm$ in $CO_{2},\;1.63{\pm}0.34\;ppm\;in\;CH_{4},\;and\;0.59{\pm}0.15\;ppm\;in\;N_{2}O$, respectively. Generally, under the presence of gas emission from agricultural soils, decrease of gas emission will be observed as increase in ambient gas concentration. We, however, could not found significant correlation between the ambient concentrations and their emissions over the experimental period. There was no GHG compensation points existed in tide flat soil.

Performance Analysis of the Pintle Thruster Using 1-D Simulation-II : Unsteady State Characteristics (1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석-II : 비정상상태 특성)

  • Noh, Seonghyeon;Kim, Jihong;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.311-317
    • /
    • 2015
  • This paper describes how to apply one-dimensional simulation to predict unsteady state characteristics of the cold-gas pintle thruster. Mass flow rate, chamber pressure, and nozzle exit pressure are key parameters for thrust control. Chamber pressure rose and fell monotonously with the pintle stroke variation, while thrust variation was different from chamber pressure variation. During the forward pintle stroke operation, the thrust value tended to decrease initially and returned to increase when pintle speed and chamber free volume exceed some specified value. Even though one-dimensional simulation has the limitations to predict unsteady state characteristics, it is still useful for initial performance assessment of various thrusters which adopt an altitude compensation nozzle such as a dual-bell nozzle, prior to experiment or numerical analysis.

Ratio of Elemental Carbon Concentrations for Respective Measurement Locations according to the Sampler (샘플러에 따른 측정 위치별 원소탄소의 농도 비율)

  • Cha, Won-Seok;Kim, Eun-Young;Choi, Sung-Won;Choi, Soo-Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.461-472
    • /
    • 2021
  • Objectives: This study was conducted to determine the differences in EC concentrations according to the type of sampler by measuring and analyzing EC. Methods: Elemental carbon was measured in diesel engine vehicles and at the roadside. Using NIOSH method 5040, a cassette was coupled to 37 mm and 27 mm quartz filters and measurements were performed 21 times. There were 14 types of measurement methods, and polystyrene, polypropylene, and metal samplers were evenly placed inside the movable chamber. Results: The results measured using the 37 mm conductive cassette (closed/open) and the IOM sampler made of conductive materials showed a higher ratio than the other results. When the 37 mm conductive cassette was measured with the lid open, it showed a statistically significantly higher ratio than with other measurement methods (p<0.05). Conclusions: Checking the EC concentration a total of 21 times at each ratio based on the concentration of the 3-stage polystyrene cassette, it was statistically significantly higher when the 37 mm conductive cassette was open. This same cassette also showed a slightly higher EC concentration when closed. It was ascertained that some DEE was collected on the cassette wall surface due to the electrical conductivity of the polystyrene cassette, resulting in sample loss. Since EC is composed of fine particles, it is thought that electrical conductivity may affect its concentration.

Design, Fabrication and Testing of Planar Type of Micro Solid Propellant Thruster (평판형 마이크로 고체 추진제 추력기의 설계, 제작 및 평가)

  • Lee, Jong-Kwang;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.77-84
    • /
    • 2006
  • With the development of micro/nano spacecraft, concepts of micro propulsion are introduced for orbit transfer and drag compensation as well as attitude control. Micro solid propellant thruster has been attention as one of possible solution for micro thruster. In this paper, micro solid propellant thruster is introduced and research on basic components of a micro solid propellant thruster is reported. Micro Pt igniter was fabricated through negative patterning and quantitative effect of geometry was estimated. The characteristic of HTPB/AP solid propellant was investigated to measure the homing velocity. A combustion chamber was fabricated by means of anisotropic etching of photosensitive glass. Finally, micro solid propellant thrusters having various geometries were fabricated and tested.

Error Compensation due to Environmental Temperature for Diaphragm-Type Pressure Sensor (다이어프램형 압력센서에서 주변 온도에 의한 오차 보상)

  • Yun, Dae Jhonng;Ahn, Jung Hwan;Lee, Gil Seung;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.177-181
    • /
    • 2019
  • Pressure sensors are used in various industries such as automobiles, airplanes, medical equipment, and coolers. Even if the ambient temperature changes, the measurement is reliable and stable. In this study a diaphragm-type pressure sensor was used to derive a temperature-compensated pressure estimation equation for accurate pressure measurement at $100^{\circ}C$ and $-40^{\circ}C$. To understand the characteristics of the pressure sensor diaphragm with respect to temperature and pressure, experiments were conducted in temperature-variable chamber using FEM analysis to confirm that the influence of temperature effect was nonlinear. Based on the experimental results, a nonlinear method for calculating the pressure by compensating for the error due to temperature was derived. The calculated pressure value is lower than 0.5 % at low and high temperatures, and lower than 0.4 % at $22^{\circ}C$, thereby eliminating the effect of temperature.

Effects of Temperature and Humidity on NDIR CO2 Gas Sensor (비분산 적외선 이산화탄소 가스센서 특성의 온·습도 영향)

  • Kim, JinHo;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.179-185
    • /
    • 2017
  • This article describes the characteristics of nondispersive infrared carbon dioxide gas sensor according to the temperatures and humidifies. In this researches, a thermopile sensor that included application-specific integrated circuit (ASIC) was used and the White-cell structure was implemented as an optical waveguide. The developed sensor modules were installed in gas chamber and then the temperature of gas chamber has been increased from 283 K to 313 K with 10K temperature step. In order to analyze the effects of humidity levels, the relative humidity levels were changed from 30 to 80%R.H. with small humidifier. Then, the characteristics of sensor modules were acquired with the increment of carbon dioxide concentrations from 0 to 2,000 ppm. When the initial voltages of sensors were compared before and after humidifying the chamber at constant temperature, the decrements of the output voltages of sensors are like these: 9mV (reference infrared sensor), 41 mV (carbon dioxide sensor), 2 mV (temperature sensor). With the increment of ambient temperature, the averaged output voltage of carbon dioxide sensor was increased 19 mV, however, when the humidity level was increased, it was decreased 14mV. Based upon the experimental results, the humidity effect could be alleviated by the increment of temperature, so the effects of humidity and temperature could be only compensated by the ambient temperature itself. The estimated carbon dioxide concentrations showed 10% large errors below 200 ppm, however, the errors of the estimations of carbon dioxide concentrations were less than ${\pm}5%$ from 400 to 2,000 ppm.