DOI QR코드

DOI QR Code

Error Compensation due to Environmental Temperature for Diaphragm-Type Pressure Sensor

다이어프램형 압력센서에서 주변 온도에 의한 오차 보상

  • Received : 2019.04.24
  • Accepted : 2019.05.28
  • Published : 2019.05.31

Abstract

Pressure sensors are used in various industries such as automobiles, airplanes, medical equipment, and coolers. Even if the ambient temperature changes, the measurement is reliable and stable. In this study a diaphragm-type pressure sensor was used to derive a temperature-compensated pressure estimation equation for accurate pressure measurement at $100^{\circ}C$ and $-40^{\circ}C$. To understand the characteristics of the pressure sensor diaphragm with respect to temperature and pressure, experiments were conducted in temperature-variable chamber using FEM analysis to confirm that the influence of temperature effect was nonlinear. Based on the experimental results, a nonlinear method for calculating the pressure by compensating for the error due to temperature was derived. The calculated pressure value is lower than 0.5 % at low and high temperatures, and lower than 0.4 % at $22^{\circ}C$, thereby eliminating the effect of temperature.

Keywords

HSSHBT_2019_v28n3_177_f0001.png 이미지

Fig. 1. Diaphragm type pressure sensor and its cross section

HSSHBT_2019_v28n3_177_f0002.png 이미지

Fig. 2. Effect of environmental temperature on diaphragm displacement; (a) -40℃, (b) 100℃

HSSHBT_2019_v28n3_177_f0003.png 이미지

Fig. 3. FEM result of diaphragm displacement; (a) under different temperature, (b) under different pressure

HSSHBT_2019_v28n3_177_f0004.png 이미지

Fig. 4. Displacement measurement test in a pressure chamber

HSSHBT_2019_v28n3_177_f0005.png 이미지

Fig. 5. Measured diaphragm displacement in a pressure chamber; (a) under different temperature, (b) under different pressure

HSSHBT_2019_v28n3_177_f0006.png 이미지

Fig. 6. Nonlinear surface of diaphragm displacement according to pressure and temperature

Table 1. Diaphragm displacement according to temperature and pressure (unit: μm)

HSSHBT_2019_v28n3_177_t0001.png 이미지

Table 2. Compensated pressure by use of each measured temperature and displacement

HSSHBT_2019_v28n3_177_t0002.png 이미지

References

  1. I. Obieta and F. J. Gracia, "Sputtered silicon thin film for piezoresistive pressure micro-sensors", Sens. Actuators A, Vol. 42, No. 1-3, pp. 685-688, 1994 https://doi.org/10.1016/0924-4247(94)80075-8
  2. Y. Suzuki, H. Takenaka, T. Nasaka, and S. Ogawa, "CrOx Thin Film Pressure Sensor Prepared Directly on The Stainless Steel Diaphragm", Tech. Dig. 12th Sens. Symp. A3-5, pp. 151-154, 1994.
  3. I. Ayerdi, E. Castano, A. Gracia, and F. J. Gracia, "Characterization of Tantalum Oxynitride Thin-Films as High-temperature Strain Gauges", Sens. Actuators A, Vol. 46, No. 1-3, pp. 218-221, 1995. https://doi.org/10.1016/0924-4247(94)00893-M
  4. K. Rajanna and S. Mahan, "Thin-Film Pressure Transducer with Manganese Film as The Strain Gauge", Sens. Actuators A, Vol. 24, No. 1, pp. 35-39, 1990. https://doi.org/10.1016/0924-4247(90)80045-7
  5. J. M. Kim and G. S. Chung, "Fabrication of a micromachined ceramic thin-film type pressure sensor for high overpressure tolerance and its characteristics", J. Sens. Sci. Technol., Vol. 12, No. 5, pp. 199-204, 2003. https://doi.org/10.5369/JSST.2003.12.5.199
  6. M. M. Kim, T. C. Nam, and Y. T. Lee, " Development of the High Temperature Silicon Pressure sensor", J. Sens. Sci. Technol., Vol. 13, No. 3, pp. 175-181, 2004. https://doi.org/10.5369/JSST.2004.13.3.175
  7. B. K. Ju, B. J. Ha, K. S. Kim, M. H. Song, S. H. Kim, C. J. Kim, K. H. Tchah, and M. H. Oh, "Formation of Silicon Diaphragm Using Silicon - Wafer Direct bonding / Electrochemical Etch - stopping and Its Application to Silicon pressure Sensor Fabrication", J. Sens. Sci. Technol., Vol. 3, No. 3, pp. 45-53, 1994.
  8. M. Akbar and M. A. Shanblatt, "Temperature compensation of piezoresistive pressure sensors", Sens. Actuators A, Vol. 33, No. 3, pp. 155-162, 1992 https://doi.org/10.1016/0924-4247(92)80161-U
  9. S. J. Park, Y. D. Kim, J. H. Kang, and S. K. Park, "Comparison of Temperature Characteristics Between Single and Poly-crystalline Sillicon Pressure Sensor", Proc. 6th Conf. on Sens. Technol., Vol. 1995, No. 11, pp. 342-344, 1995.
  10. J. M. Kim, Y. T. Lee, H. D. Seo, and S. G. Choi, "The Improvement in Offset and Temperature Drift on Silicon Piezoresistive Pressure Sensor", J. Sens. Sci. Technol., Vol. 5, No. 3, pp. 17-24, 1996.
  11. S. J. Lee and J. H. Lee, "A Study on the Manufacturing Processes of a Pressure Sensor with Temperature", J. Korean Soc. Precis. Eng., Vol. 34, No. 10, pp. 701-706, 2017. https://doi.org/10.7736/KSPE.2017.34.10.701
  12. H. D, Park, K. N. Kim, and B. N. Lee, "Physical Sensors; A Design of Output Voltage Compensation Circuits for Bipolar Integrated Pressure Sensor", J. Sens. Sci. Technol., Vol. 7, No. 5, pp. 300-305, 1998.
  13. W. J. Kim, Y. S. Cho, and J. H. Hwang, "Construction and Characterization of the Stainless Steel Isolated Type Semiconductor Pressure Sensor", J. Sens. Sci. Technol., Vol. 11, No. 3, pp. 138-144, 2002. https://doi.org/10.5369/JSST.2002.11.3.138
  14. Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, and X. Dong, "Simultaneous pressure and temperature measurement with polymer-coated fiber Bragg grating", Electron. Lett., Vol. 36, No. 6, pp.564-566, 2000. https://doi.org/10.1049/el:20000452
  15. C. Pramanick, T. Islam, and H. Saha, "Temperature compensation of piezoresistive micro-machined porous silicon pressure sensor by ANN", Microelectron. Reliab., Vol. 46, No. 2-4, pp. 343-351, 2006. https://doi.org/10.1016/j.microrel.2005.04.008
  16. D. J. Yoon and J. H. Ahn, "Development of a Test Equipment for Diaphragm Deflection Using a PZT Actuator", J. Korean Soc. Precis. Eng., Vol. 34, No. 12, pp. 927-932, 2017. https://doi.org/10.7736/KSPE.2017.34.12.927