• Title/Summary/Keyword: Compact Hausdorff space

Search Result 49, Processing Time 0.023 seconds

On compact convex subsets of fuzzy number space (퍼지 수 공간의 컴팩트 볼륵 집합에 관한 연구)

  • Kim, Yun-Kyong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.14-17
    • /
    • 2003
  • By Mazur's theorem, the convex hull of a relatively compact subset a Banach space is also relatively compact. But this is not true any more in the space of fuzzy numbers endowed with the Hausdorff-Skorohod metric. In this paper, we establish a necessary and sufficient condition for which the convex hull of K is also relatively compact when K is a relatively compact subset of the space F(R$\^$k/) of fuzzy numbers of R$\^$k/ endowed with the Hausdorff-Skorohod metric.

  • PDF

ON MAXIMAL COMPACT FRAMES

  • Jayaprasad, PN;Madhavan, Namboothiri NM;Santhosh, PK;Varghese, Jacob
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.493-499
    • /
    • 2021
  • Every closed subset of a compact topological space is compact. Also every compact subset of a Hausdorff topological space is closed. It follows that compact subsets are precisely the closed subsets in a compact Hausdorff space. It is also proved that a topological space is maximal compact if and only if its compact subsets are precisely the closed subsets. A locale is a categorical extension of topological spaces and a frame is an object in its opposite category. We investigate to find whether the closed sublocales are exactly the compact sublocales of a compact Hausdorff frame. We also try to investigate whether the closed sublocales are exactly the compact sublocales of a maximal compact frame.

A NOTE ON H-SETS

  • Tikoo, Mohan L.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.91-95
    • /
    • 1988
  • The nature of a H-set in a Hausdorff space is not well understood. In this note it is shown that if X is a countable union of nowhere dense compact sets, then X is not H-embeddable in any Hausdorff space. An example is given to show that there exists a non-Urysohn, non-H-closed space X such that each H-set of X is compact.

  • PDF

ERGODIC SHADOWING, $\underline{d}$-SHADOWING AND EVENTUAL SHADOWING IN TOPOLOGICAL SPACES

  • Sonika, Akoijam;Khundrakpam Binod, Mangang
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.839-853
    • /
    • 2022
  • We define the notions of ergodic shadowing property, $\underline{d}$-shadowing property and eventual shadowing property in terms of the topology of the phase space. Secondly we define these notions in terms of the compatible uniformity of the phase space. When the phase space is a compact Hausdorff space, we establish the equivalence of the corresponding definitions of the topological approach and the uniformity approach. In case the phase space is a compact metric space, the notions of ergodic shadowing property, $\underline{d}$-shadowing property and eventual shadowing property defined in terms of topology and uniformity are equivalent to their respective standard definitions.

HEMICOMPACTNESS AND HEMICONNECTEDNESS OF HYPERSPACES

  • Baik, B.S.;Hur, K.;Lee, S.W.;Rhee, C.J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.171-179
    • /
    • 2000
  • We prove the following: (1) For a Hausdorff space X, the hyperspace K(X) of compact subsets of X is hemicompact if and only if X is hemicompact. (2) For a regular space X, the hyperspace $C_K(X)$ of subcontinua of X is hemicompact (hemiconnected) if and only if X is hemicompact (hemiconnected). (3) For a locally compact Hausdorff space X, each open set in X is hemicompact if and only if each basic open set in the hyperspace K(X) is hemicompact. (4) For a connected, locally connected, locally compact Hausdorff space X, K(X) is hemiconnected if and only if X is hemiconnected.

  • PDF

THICKLY SYNDETIC SENSITIVITY OF SEMIGROUP ACTIONS

  • Wang, Huoyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1125-1135
    • /
    • 2018
  • We show that for an M-action on a compact Hausdorff uniform space, if it has at least two disjoint compact invariant subsets, then it is thickly syndetically sensitive. Additionally, we point out that for a P-M-action of a discrete abelian group on a compact Hausdorff uniform space, the multi-sensitivity is equivalent to both thick sensitivity and thickly syndetic sensitivity.

POSITIVE EXPANSIVITY, CHAIN TRANSITIVITY, RIGIDITY, AND SPECIFICATION ON GENERAL TOPOLOGICAL SPACES

  • Devi, Thiyam Thadoi;Mangang, Khundrakpam Binod
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.319-343
    • /
    • 2022
  • We discuss the notions of positive expansivity, chain transitivity, uniform rigidity, chain mixing, weak specification, and pseudo orbital specification in terms of finite open covers for Hausdorff topological spaces and entourages for uniform spaces. We show that the two definitions for each notion are equivalent in compact Hausdorff spaces and further they are equivalent to their standard definitions in compact metric spaces. We show that a homeomorphism on a Hausdorff uniform space has uniform h-shadowing if and only if it has uniform shadowing and its inverse is uniformly equicontinuous. We also show that a Hausdorff positively expansive system with a Hausdorff shadowing property has Hausdorff h-shadowing.

REMARKS ON CS-STARCOMPACT SPACES

  • Song, Yan-Kui
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.201-205
    • /
    • 2012
  • A space X is cs-starcompact if for every open cover $\mathcal{U}$ of X, there exists a convergent sequence S of X such that St(S, $\mathcal{U}$) = X, where $St(S,\mathcal{U})\;=\; \cup\{U{\in}\mathcal{U}:U{\cap}S{\neq}\phi\}$. In this paper, we prove the following statements: (1) There exists a Tychonoff cs-starcompact space having a regular-closed subset which is not cs-starcompact; (2) There exists a Hausdorff cs-starcompact space with arbitrary large extent; (3) Every Hausdorff centered-Lindel$\ddot{o}$f space can be embedded in a Hausdorff cs-starcompact space as a closed subspace.

A note on measurable fuzzy mappings (가측인 퍼지 사상의 특성)

  • Kim, Yun-Kyong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.277-280
    • /
    • 2002
  • In this paper, we characterize the Borel $\sigma$-field generated by the Hausdorff-Skorokhod metric on the space of normal and upper-semicontinuous fuzzy sets with compact support in the Ecleadean space R$\^$n/. As a result. we give a characterization of measurable fuzzy mappings .

  • PDF