• Title/Summary/Keyword: Commutativity

Search Result 100, Processing Time 0.021 seconds

COMMUTATIVITY OF PRIME GAMMA NEAR RINGS WITH GENERALIZED DERIVATIONS

  • MARKOS, ADNEW;MIYAN, PHOOL;ALEMAYEHU, GETINET
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.915-923
    • /
    • 2022
  • The purpose of the present paper is to obtain commutativity of prime Γ-near-ring N with generalized derivations F and G with associated derivations d and h respectively satisfying one of the following conditions:(i) G([x, y]α = ±f(y)α(xoy)βγg(y), (ii) F(x)βG(y) = G(y)βF(x), for all x, y ∈ N, β ∈ Γ (iii) F(u)βG(v) = G(v)βF(u), for all u ∈ U, v ∈ V, β ∈ Γ,(iv) if 0 ≠ F(a) ∈ Z(N) for some a ∈ V such that F(x)αG(y) = G(y)αF(x) for all x ∈ V and y ∈ U, α ∈ Γ.

A Commutativity Theorem for Rings

  • KHAN, M.S.S.
    • Kyungpook Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.499-502
    • /
    • 2003
  • The aim of the present paper is to establish for commutativity of rings with unity 1 satisfying one of the properties $(xy)^{k+1}=x^ky^{k+1}x$ and $(xy)^{k+1}=yx^{k+1}y^k$, for all x, y in R, and the mapping $x{\rightarrow}x^k$ is an anti-homomorphism where $k{\geq}1$ is a fixed positive integer.

  • PDF

COMMUTATIVITY AND HYPONORMALITY OF TOEPLITZ OPERATORS ON THE WEIGHTED BERGMAN SPACE

  • Lu, Yufeng;Liu, Chaomei
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.621-642
    • /
    • 2009
  • In this paper we give necessary and sufficient conditions that two Toeplitz operators with monomial symbols acting on the weighted Bergman space commute. We also present necessary and sufficient conditions for the hyponormality of Toeplitz operators with some special symbols on the weighted Bergman space. All the results are stated in terms of the Mellin transform of the symbol.

ON SEMIDERIVATIONS IN 3-PRIME NEAR-RINGS

  • Ashraf, Mohammad;Boua, Abdelkarim
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.433-445
    • /
    • 2016
  • In the present paper, we expand the domain of work on the concept of semiderivations in 3-prime near-rings through the study of structure and commutativity of near-rings admitting semiderivations satisfying certain differential identities. Moreover, several examples have been provided at places which show that the assumptions in the hypotheses of various theorems are not altogether superfluous.

WEAKER FORMS OF COMMUTING MAPS AND EXISTENCE OF FIXED POINTS

  • Singh, S.L.;Tomar, Anita
    • The Pure and Applied Mathematics
    • /
    • v.10 no.3
    • /
    • pp.145-161
    • /
    • 2003
  • Weak commutativity of a pair of maps was introduced by Sessa [On a weak commutativity condition of mappings in fixed point considerations. Publ. Inst. Math. (Beograd) (N.S.) 32(40) (1982),149-153] in fixed point considerations. Thereafter a number of generalizations of this notion has been obtained. The purpose of this paper is to present a brief development of weaker forms of commuting maps, and to obtain two fixed point theorems for noncommuting and noncontinuous maps on noncomplete metric spaces.

  • PDF

ON GENERALIZED (α, β)-DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.101-106
    • /
    • 2006
  • Let R be a prime ring and I a nonzero ideal of R. Let $\alpha,\;\nu,\;\tau\;R{\rightarrow}R$ be the endomorphisms and $\beta,\;\mu\;R{\rightarrow}R$ the automorphisms. If R admits a generalized $(\alpha,\;\beta)-derivation$ g associated with a nonzero $(\alpha,\;\beta)-derivation\;\delta$ such that $g([\mu(x),y])\;=\;[\nu/(x),y]\alpha,\;\tau$ for all x, y ${\in}I$, then R is commutative.

On Axis-commutativity of Rings

  • Kwak, Tai Keun;Lee, Yang;Seo, Young Joo
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.461-472
    • /
    • 2021
  • We study a new ring property called axis-commutativity. Axis-commutative rings are seated between commutative rings and duo rings and are a generalization of division rings. We investigate the basic structure and several extensions of axis-commutative rings.