• 제목/요약/키워드: Common-rail fuel injection

검색결과 211건 처리시간 0.025초

바이오디젤 혼합연료를 적용한 승용디젤엔진의 성능 및 배출물 저감특성 (Engine performance and emission reduction characteristics of biodiesel blended diesel fuel in a passenger car diesel engine)

  • 조시기
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.181-185
    • /
    • 2014
  • 본 논문은 카놀라 바이오디젤 혼합연료를 승용디젤엔진에 적용하였을 때 나타나는 연소 및 배기배출물 특성에 관한 연구이다. 본 연구에서는 카놀라 바이오디젤을 20%, 40%를 ULSD 80%, 60%와 체적비로 혼합한 혼합연료를 사용하여 ULSD 결과 데이터와 비교하였다. 엔진 회전속도, 엔진부하, 연료분사압력 변화를 실험변수로 사용하였으며. 카놀라 바이오 디젤의 혼합비가 증가 할수록 NOx 배출량은 증가하였지만, Soot 배출량은 감소하는 결과를 나타내었다. 또한 Soot 배출량은 낮은 연료분사압력에서 높은 배출량을 보였다.

저온 디젤 연소에서 T90 온도가 배기가스에 미치는 영향 (The Effect of T90 Temperature on Exhaust Emissions in Low-temperature Diesel Combustion)

  • 한만배
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.72-77
    • /
    • 2011
  • This study is to investigate the effect of the distillation temperature in ultra low sulfur diesel fuel on exhaust emissions in the low-temperature diesel combustion with 1.9L common rail direct injection diesel engine. Low temperature diesel combustion was achieved by adopting an external high EGR rate with a strategic injection control. The engine was operated at 1500 rpm 2.6 bar BMEP. The 90% distillation recovery temperature (T90) was $270^{\circ}C$ and $340^{\circ}C$ for the respective cetane number (CN) 30 and 55. It was found that there exists no distinctive discrepancy on exhaust emissions with regards to the different T90s. The high CN (CN55) fuels follow the similar trend of exhaust emissions as observed in CN30 fuels' except that high T90 fuel (CN55-T340) produced higher PM compared to low T90 fuel (CN55-T270). This may come from that high T90 plays an active role in aggravating the degree of fuel-air mixture preparedness before ignition.

3-way형과 Bypass형 서보유압 피에조 인젝터의 구동특성 비교 (Comparison Analysis of Dynamic Characteristics of Servo-hydraulic Piezo-driven Injector between 3-way and Bypass-circuit Type)

  • 조인수;정명철;이진욱
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.169-175
    • /
    • 2013
  • CRDi technology of diesel engine was developed from in the early 2000s due to a need to increase fuel efficiency and environment care. Especially, high-pressure fuel injection system in CRDi system which has a fuel injection unit including an injector, a fuel pump and common-rail, etc. becomes possible to make the exhaust gas clean as well as power improvement. In this study, comparison of dynamic characteristics of servo-hydraulic piezo-driven injector with 3-way and bypass-circuit type was analyzed by using the AMESim code. As results of this study, it found the bypass-circuit inside servo-hydraulic piezo injector can cause a faster injection response than that of the 3-way type. Also it was shown that bypass-circuit type had better control capability due to hydraulic bypass system.

분사압력변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향 (Effect of the Change in Injection Pressure on the Mixture Formation Process in Evaporative Free Diesel Spray)

  • 염정국;정성식
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.214-219
    • /
    • 2005
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 72MPa to 112MPa by using a common rail injection system(ECD-U2). The images of liquid and vapor phase in the evaporating free diesel spray are simultaneously taken by exciplex fluorescence method. As a result, it can be confirmed that the distribution of vapor concentration is more uniform in the case of the high injection than in that of the low injection pressure.

  • PDF

CNG/Diesel Dual-fuel 엔진의 CNG 혼합율에 따른 엔진성능 및 배출가스 특성에 관한 연구 (The Engine Performance and Emission Characteristics of CNG/Diesel Dual-fuel Engine by CNG Mixing Ratio)

  • 최건호;임옥택
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.38-43
    • /
    • 2011
  • A CNG/diesel dual-fuel engine uses CNG as the main fuel and injects a small amount of diesel as an ignition priming. This study proposed the modification of the existing diesel engine into a dual-fuel engine that injects diesel with a high pressure by common rail direct injection (CRDI) and by injecting CNG at the intake port for premixing. And experiment was progressed for understanding about effect of CNG mixing ratio. The CNG/diesel dual-fuel engine showed equally satisfactory coordinate torque and power regardless of CNG mixing ratio. The PM emission was low at any CNG mixing ratio because of very small diesel pilot injection. In case of NOx and HC, high CNG mixing ratio showed low NOx and HC emissions at low speed. At medium & high speed, low CNG mixing ratio showed low NOx and HC emissions. Therefore, it would be optimized by controlling CNG mixing ratio.

직접분사식 디젤기관의 착화지연기간에 대한 고찰 (Some Considerations of the Ignition Delay Period in D.I Diesel Engine)

  • 방중철
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.97-103
    • /
    • 2010
  • The four combustion stages in a diesel engine have close correlation among them. Especially, the ignition delay period has significant effect on the following combustion stage. And the period is also one of inevitable combustion processes in the diesel engine. For example, the diesel knocking is a well-known phenomenon due to the long ignition delay period. The interval of the ignition delay period is affected by the mixture formation process in the cylinder. However, in the case of the D.I. diesel engine, the available duration to make the mixture formation of air-fuel is very short. In addition, the means of the mixture formation mainly depends on the injection characteristics and properties of the fuel. It is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this study, using the visible engine, we measured the ignition delay period by photo sensor which detect occurrence of flame and presented the factors of the injection characteristics such as kinds of injection system, the injection pressure and the injection timing. The relation between the ignition delay period and cylinder pressure diagram which was concurrently obtained was also estimated.

The Study of Emission Characteristics of Biodiesel Fuel in Diesel Engines

  • Yeom, Jeong-Kuk
    • 동력기계공학회지
    • /
    • 제19권1호
    • /
    • pp.56-63
    • /
    • 2015
  • In this study, the exhaust characteristics of the diesel engine for the change of the mixing ratio of biodiesel fuel were quantitatively analyzed by using the numerical analysis method. As the fuel used in the experiment, the diesel and biodiesel(waste oil, soybean oil), the mixed fuel BD2(Diesel only), BD3, BD5, BD20, BD50 and BD100 were used. The injection pressure($p_{inj}$) was set to 400bar, 600bar, 800bar, 1000bar and 1200bar as the experimental variable. Also the concept of the standard deviation, Pearson's correlation coefficient and Spearman rank-order correlation coefficient based on the statistics was introduced in order to analyze the exhaust characteristics of the quantitative NOx and Soot according to the injection pressure and the mixing ratio variation of biodiesel blending fuel. It is considered that as a result of studies, for the waste oil, NOx and Soot can be simultaneously reduced through control of the mixing ratio at the regions of $p_{inj}=400bar$ and $p_{inj}=600bar$, and the Soot can be reduced without affecting on the emission of NOx at more than $p_{inj}=800bar$. For the soybean oil, NOx and Soot can be simultaneously reduced at $p_{inj}=400bar$ and the Soot can be reduced without affecting on the emission of NOx at $p_{inj}=600bar$.

저온 디젤 연소에서 세탄가가 배기가스 특성에 미치는 영향 (The Effect of Cetane Number on Exhaust Emissions in Low-temperature Diesel Combustion)

  • 한만배
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.17-22
    • /
    • 2011
  • This study is to investigate the effect of the cetane number in ultra low sulfur diesel fuel on combustion characteristics and exhaust emissions at 1500 rpm and 2.6bar BMEP in low-temperature diesel combustion with 1.9L common rail direct injection diesel engine. Low-temperature diesel combustion was achieved by adopting external high EGR rate with the strategic injection control without modification of engine components. Test fuels are ultra low sulfur diesel fuel (sulfur less than 12 ppm) with two cetane numbers (CN), i.e., CN30 and CN55. For the CN30 fuel, as a start of injection (SOI) timing is retarded, the duration of an ignition delay was decreased while still longer than $20^{\circ}CA$ for all the SOI timings. In the meanwhile, the CN55 fuel showed that an ignition delay was monotonically extended as an SOI timing is retarded but much shorter than that of the CN30 fuel. The duration of combustion for both fuels was increased as an SOI timing is retarded. For the SOI timing for the minimum BSFC, the CN30 produced nearly zero PM much less than the CN55, while keeping the level of NOx and the fuel consumption similar to the CN55 fuel. However, the CN30 produced more THC and CO than the CN55 fuel, which may come from the longer ignition delay of CN30 to make fuel and air over-mixed.

Swirl Groove Piston에 의한 바이오 디젤연료의 연소과정에 관한 연구 (A Study on Combustion Process of Biodiesel Fuel using Swirl Groove Piston)

  • 방중철;김성훈
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.105-113
    • /
    • 2009
  • The performance of a direct-injection type diesel engine often depends on the strength of swirl or squish, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the combustion in the cylinder was affected by the mixture formation process. In this paper, combustion process of biodiesel fuel was studied by employing the piston which has several grooves with inclined plane on the piston crown to generate swirl during the compression stroke in the cylinder in order to improve the atomization of high viscosity fuel such as biodiesel fuel and toroidal type piston generally used in high speed diesel engine. To take a photograph of flame, single cylinder, four stroke diesel engine was remodeled into two stroke visible engine and high speed video camera was used. The results obtained are summarized as follows; (1) In the case of toroidal piston, when biodiesel fuel was supplied to plunger type injection system which has very low injection pressure as compared with common-rail injection system, the flame propagation speed was slowed and the maximum combustion pressure became lower. These phenomena became further aggravated as the fuel viscosity gets higher. (2) In the case of swirl groove piston, early stage of combustion such as rapid ignition timing and flame propagation was activated by intensifying the air flow in the cylinder. (3) Combustion process of biodiesel fuel was improved by the reason mentioned in paragraph (2) above. Consequently, the swirl grooves would also function to improve the combustion of high viscosity fuel.

직접분사식 압축착화엔진에서 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구 (A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels in D.I Compression-Ignition Engine)

  • 정재훈;임옥택;전종업;이상욱;표영덕;이영재;서호철
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.530-537
    • /
    • 2012
  • This work experimentally investigates that Diesel-DME blended fuel influences combustion characteristics and emissions (NOx, CO, HC, smoke) in a single-cylinder DI diesel engine. Diesel is used as a main fuel and DME is blended for the use of its quick evaporating characteristics. Diesel and DME are blended by the method of weight ratio. Weight ratios for Diesel and DME are 95:5 and 90:10 respectively and the both ratios have been used altogether in blended fuel. The experiments are conducted in this study single cylinder engine is equipped with common rail and injection pressure is 700 bar at 1200 rpm. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions. DME is compressed to 15 bar by using nitrogen gas thus it can be maintained the liquid phase. In this study, different system compared others paper is common rail system, also there is combustion and emission about compared DME and diesel fuel. It is expected to be utilized about blended fuel.