• 제목/요약/키워드: Common-rail

검색결과 362건 처리시간 0.024초

커먼레일 분사방식 디젤기관에서 바이오디젤유의 혼합율에 따른 성능 및 배기배출물 특성 연구 (A Study for Characteristics of Performances and Exhaust Emission on Blending Rates of Biodiesel Fuel in a Common-Rail Injection Diesel Engine)

  • 최승훈;오영택
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.5-10
    • /
    • 2006
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong. In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated common rail diesel engine. The smoke emission of biodiesel fuel 30vol-%(max. content) was reduced in comparison with diesel fuel, that is, it was reduced approximately 60% at 4000rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, NOx emission of biodiesel fuel was increased compared with commercial diesel fuel.

  • PDF

커먼레일 디젤엔진에서 후분사 변화가 배출가스 성분 및 온도 변화에 미치는 영향에 대한 실험적 연구 (The experimental study of post injection effect on exhaust gas temperature and composition in a common rail DI diesel engine)

  • 정재욱;장동훈;박정규;전광민
    • 한국분무공학회지
    • /
    • 제9권1호
    • /
    • pp.15-20
    • /
    • 2004
  • The post injection effect to enhance aftertreatment devices' performance is essential to meet future stringent emission standards by controlling exhaust gas temperature and emission pollutants. The test has been made with commercial common rail diesel engine by post injection manipulation, to optimize exhaust gas temperature while guarantee low fuel penalty. The optimization was done at 1500, 2000 and 2500[rpm] for 2, 4[bar] condition which show low exhaust gas temperature. The main purpose of this test is dedicated to understand mechanism of exhaust gas temperature rise while optimizing

  • PDF

커먼레일식 직분식 가시화 디젤엔진의 파일럿 분사 연소 및 Soot 분포 특성에 관한 연구 (A Study on the Combustion Characteristic and Soot Distribution of a Common Rail Type D.I.Diesel Visualized Engine with Pilot Injection)

  • 한용택;이재용;이기형
    • 한국연소학회지
    • /
    • 제8권3호
    • /
    • pp.31-37
    • /
    • 2003
  • The objective of this work is to investigate the effect of swirl, injection pressure and pilot injection on D.I.Diesel combustion by using a transparent engine system. The test engine is equipped with common rail injection system to obtain high pressure and to control injection timing and duration. In this study, the combustion analysis and steady flow test were conducted to estimate the heat release rate from in-cylinder pressure and pilot injection was investigated by using LII technique. As the results, high injection pressure was found to shorten ignition delay as well as enhance peak pressure and heat release rate was greatly affected by injection timing and pilot injection. In addition, the results showed that the period of soot formation corresponded to the diffusion flame.

  • PDF

분사 조건의 변화가 소형 커먼레일 디젤 엔진의 연소 및 배기 특성에 미치는 영향 (Effect of Injection Parameters on Combustion and Exhaust Emission Characteristics in a Small Common-rail Diesel Engine)

  • 김명윤;이두진;노현구;이제형;이창식
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.9-15
    • /
    • 2004
  • The characteristics of combustion and emissions were investigated in a single cylinder DI diesel engine equipped with a common rail injection system. This study presents an experimental study of the effect of engine speed, injection timing, injection pressure and pilot injection timing on the combustion and exhaust emissions. The engine speeds were 1000 and 2000rpm and the corresponding injection pressures were 50 and 100MPa. Experimental results show that NOx emissions decrease with retarded injection timing, while HC and CO emissions increases. Higher injection pressure increases NOx with lower soot emissions. For the case with the pilot injection prior to main injection, the ignition delay is shortened and the premixed combustion ratio decreases. Also NOx and soot emissions are decreased with increase of pilot injection advance.

INVESTIGATION OF SHORT INJECTIONS USING STANDARD AND MODIFIED COMMON RAIL INJECTORS

  • Ficarella, A.;Giuffrida, A.;Lanzafame, R.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.155-163
    • /
    • 2007
  • The control of the fuel to be introduced into the combustion chamber under idling and low-load conditions is known to be a problem in Diesel engines, owing to the relatively small fraction of the full-load fuel needed under light loads. Thus, particular attention should be paid to the behavior of the injector with reference to short injection events. This work presents the results of an experimental campaign carried out with two different types of common rail injectors, a standard injector and a modified one. The latter, coming from a simple modification realized in a standard injector, exhibits linear behavior between injected fuel and solenoid energizing time in the field of short injections. A direct comparison of the two injection behaviors suggests a possible way to better control short or pilot injections.

LVDS I/O Cells with Rail-to-Rail Input Receiver

  • Lim, Byong-Chan;Lee, Sung-Ryong;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.567-570
    • /
    • 2002
  • The LVDS (Low Voltage Differential Signaling) I/O cells, fully compatible with ANSI TIA/ EIA-644 LVDS standard, are designed using a 0.35${\mu}m$ standard CMOS technology. With a single 3V supply, the core cells operate at 1.34Gbps and power consumption of the output driver and the input receiver is 10. 5mW and 4.2mW, respectively. In the output driver, we employ the DCMFB (Dynamic Common-Mode FeedBack) circuit which can control the DC offset voltage of differential output signals. The SPICE simulation result of the proposed output driver shows that the variation of the DC offset voltage is 15.6% within a permissible range. In the input receiver, the proposed dual input stage with a positive feedback latch covers rail-to-rail input common-mode range and enables a high-speed, low-power operation. 5-channels of the proposed LVDS I/O pair can handle display data up to 8-bit gray scale and UXGA resolution.

  • PDF

커먼레일 연료분사 시스템을 장착한 2.9 리터급 경량 DME 트럭의 연구 및 개발 (Research and Development of a 2.9 Liter Light-duty DME Truck Using Common Rail Fuel Injection Systems)

  • 정수진;박정권;오세두;이기수;임옥택;표영덕
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.107-116
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5 kgfm(based on 2,000 rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

커먼레일 연료분사 시스템을 장착한 경량 DME 트럭의 연구 및 개발 (Research and Development of a Light-Duty DME Truck Using Common Rail Fuel Injection Systems)

  • 정수진;전문수;박정권
    • 융복합기술연구소 논문집
    • /
    • 제2권1호
    • /
    • pp.24-30
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40 MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5kgfm(based on 2,000rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

  • PDF

저전압 $Constant-g_m$ Rail-to-Rail CMOS 증폭회로 설계 (Design of a Low-Voltage $Constant-g_m$ Rail-to-Rail CMOS Op-amp)

  • 이태원;이경일;오원석;박종태;유창근
    • 전자공학회논문지C
    • /
    • 제35C권2호
    • /
    • pp.22-28
    • /
    • 1998
  • A $g_m$-control technique using a new electronic zener diode (EZD) for CMOS rail-torail input stages is presented. A regulated CMOS inverter is used as an EZD to obtain a constant-$g_m$ input stage. The turn-off characteristic of the proposed EZD is better than that of the existing EZD using two complementarey diodes, and thus, better $g_m$-control can be achieved. With this input stage, a 3V constant-$g_m$ rail-to-rail CMOS op-amp has been designed and fabricated using a $0.8\mu\extrm{m}$single-poly, double-metal CMOS process. Measurements results show that the $g_m$ variation is about 6% over the entire input common-mode range, and the op-amp has a dc gain of 88dB and a unity-gain frequency of 4MHz for $C_L=20pF, R_L=10k\Omega$

  • PDF

노즐특성이 Small HSDI 디젤엔진의 성능에 미치는 영향 (Study of Nozzle Characteristics on the Performance of a Small HSDI Diesel Engine)

  • 류명석
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.69-76
    • /
    • 2001
  • VCO nozzle is devised to minimize the HC emission and has been applied on some HSDI diesel engines. But it is not well reported whether VCO nozzle would be advantageous over SAC nozzle in a small HSDI diesel engine. In this paper it is presented that characteristics of VCO and SAC nozzle under common rail fuel injection system and their effects on the performance in a small HSDI diesel engine.

  • PDF