• 제목/요약/키워드: Common Lyapunov Function

검색결과 12건 처리시간 0.03초

불완전한 전반부 정합 하에서의 이산 T-S 퍼지 모델에 대한 완화된 안정화 조건 (A Relaxed Stabilization Condition for Discrete T-S Fuzzy Model under Imperfect Premise Matching)

  • 임현준;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제27권1호
    • /
    • pp.59-64
    • /
    • 2017
  • 본 논문은 이산 Takagi-Sugeno (T-S) 퍼지 모델의 제어기 설계 시 시스템과 제어기가 상이한 소속 함수를 가지는 불완전한 전반부 정합 하에서의 제어기 설계에 대해 다룬다. 이산 T-S 퍼지 모델의 안정화 조건을 구할 때, 단일 Lyapunov 함수를 이용하여 구한 기존의 보수적인 안정화 조건보다 완화된 안정화 조건을 구하기 위해 퍼지 Lyapunov 함수를 고려한다. 퍼지 Lyapunov 함수를 이용하여 선형 행렬 부등식 기반의 완화된 안정화 조건을 구하고 시뮬레이션을 통해 제안한 방법의 타당성을 검증한다.

슬라이딩 모드 제어와 스위칭 기법에 기반한 수상함의 경로 추종 제어기 설계 (Path Tracking Controller Design for Surface Vessel Based on Sliding Mode Control Method with Switching Law)

  • 이준구
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.108-118
    • /
    • 2017
  • In this paper, the path tracking controller for a surface vessel based on the sliding mode control (SMC) with the switching law is proposed. In order to have no restriction on movement and improved tracking performance, the proposed control system is developed as follows: First, the kinematic and dynamic models in Cartesian coordinates are considered to solve the singularity problem at the origin. Second, the new multiple sliding surfaces are designed with the SMC and approach angle concept to solve the under-actuated property. Third, the switching control system is designed to improve tracking performance. To prove the stability of the proposed switching system under the arbitrary switching, the Lyapunov stability analysis method with the common Lyapunov function is used. Finally, the computer simulations are performed to demonstrate the performance, effectiveness and stability of the proposed tracking controller of a surface vessel.

Nonquadratic Stability Condition of Continuous Fuzzy Systems

  • Kim, Eun-Tai;Park, Min-Kee
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.596-599
    • /
    • 2003
  • In this paper, a new asymptotic stability condition of continuous fuzzy system is proposed. The new stability condition considers the nonquadratic stability by using the P-matrix measure. Later the relationship of the suggested stability condition and the well-known stability condition is discussed and it is shown in a rigorous manner that the proposed criterion includes the conventional conditions.

혼돈 비선형 시스템을 위한 안정된 퍼지 제어기의 설계 (The Design of Stable Fuzzy Controller for Chaotic Nonlinear Systems)

  • 최종태;박진배최윤호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.429-432
    • /
    • 1998
  • This paper is to design stable fuzzy controller so as to control chaotic nonlinear systems effectively via fuzzy control system and Parallel Distributed Compensation (PDC) design. To design fuzzy control system, nonlinear systems are represented by Takagi-sugeno(TS) fuzzy models. The PDC is employed to design fuzzy controllers from the TS fuzzy models. The stability analysis and control design problems is to find a common Lyapunov function for a set of linear matrix inequalitys(LMIs). The designed fuzzy controller is applied to Rossler system. The simulation results show the effectiveness of our controller.

  • PDF

맘다니형 퍼지 시스템의 안정 해석 (A Stability Analysis of Mamdani Type Fuzzy Systems)

  • 이창훈;수게노미치오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.76-79
    • /
    • 2001
  • This paper is concerned with a stability analysis of Madam Type fuzzy systems. It Introduces the canonical form of an unforced fuzzy system and its stability theorem suggested in the previous study. Then it gives new simplified stability conditions based on the Lyapunov function method. A common positive definite matrix in the stability conditions is searched by the LMI method.

  • PDF

Decentralized Controller Design for Nonlinear Systems using LPV technique

  • Lee, Sangmoon;Kim, Sungjin;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.68.5-68
    • /
    • 2001
  • This paper investigates the problem of linear parameter-dependent output feedback controllers design for interconnected linear parameter-varying(LPV) plant. By using a parameter-independent common Lyapunov function, sucient conditions for solving the problems are established, which allow us to design linear parameter dependent decentralized controllers in terms of scaled H-infinite control problems for related linear systems without interconnections. The solvability conditions are expressed in terms of finite-dimensional linear matrix inequalities(LMI´s) evaluated at the extreme points of the admissible parameter set.

  • PDF

Intelligent Scheduling Control of Networked Control Systems with Networked-induced Delay and Packet Dropout

  • Li, Hongbo;Sun, Zengqi;Chen, Badong;Liu, Huaping;Sun, Fuchun
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.915-927
    • /
    • 2008
  • Networked control systems(NCSs) have gained increasing attention in recent years due to their advantages and potential applications. The network Quality-of-Service(QoS) in NCSs always fluctuates due to changes of the traffic load and available network resources. To handle the network QoS variations problem, this paper presents an intelligent scheduling control method for NCSs, where the sampling period and the control parameters are simultaneously scheduled to compensate the effect of QoS variation on NCSs performance. For NCSs with network-induced delays and packet dropouts, a discrete-time switch model is proposed. By defining a sampling-period-dependent Lyapunov function and a common quadratic Lyapunov function, the stability conditions are derived for NCSs in terms of linear matrix inequalities(LMIs). Based on the obtained stability conditions, the corresponding controller design problem is solved and the performance optimization problem is also investigated. Simulation results are given to demonstrate the effectiveness of the proposed approaches.

시간지연 시스템에 대한 혼합 $H_2$/$H_{\infty}$ 출력궤환 제어기 설계 (Mixed $H_2$/$H_{\infty}$ Output Feedback Controller Design for Time-Delayed System)

  • 양혜진;김종해;조용철;박흥배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.331-331
    • /
    • 2000
  • This paper presents the mixed $H_2/H_{\infty}$ output feedback controIler design method for linear systems with delayed state. The objective is to design the output feedback controller which minimizes the H$_2$-norm of one transfer function while ensuring the H$_{\infty}$-norm of the other is held below a chosen level. When objective is tormulated in terms of a common Lyapunov function, the sufficient conditions of existence of mixed $H_2/H_{\infty}$ controller are given in terms of LMIs. terms of LMIs.

  • PDF

Internet Based Network Control using Fuzzy Modeling

  • Lee, Jong-Bae;Park, Chang-Woo;Sung, Ha-Gyeong;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1162-1167
    • /
    • 2004
  • This paper presents the design methodology of digital fuzzy controller(DFC) for the systems with time-delay. We propose the fuzzy feedback controller whose output is delayed with unit sampling period and predicted. The analysis and the design problem considering time-delay become easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy system with time-delay is solved by linear matrix inequality(LMI) theory. Convex optimization techniques are utilized to solve the stable feedback gains and a common Lyapunov function for designed fuzzy control system. To show the effectiveness the proposed control scheme, the network control example is presented.

  • PDF

A Fuzzy Model Based Controller for the Control of Inverted Pendulum

  • Wook Chang;Kwon, Ok-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.459-464
    • /
    • 1998
  • In this paper, we propose a stable fuzzy logic controller architecture for inverted pendulum,. In the design procedure, we represent the fuzzy system as a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller by considering each local state feedback controller and a supervisory controller, Unlike usual parallel distributed controller, one can design a global stable fuzzy controller without finding a common Lyapunov function by the proposed method. A simulation is performed to control the inverted pendulum to show the effectiveness and feasibility of the proposed fuzzy controller.

  • PDF