• Title/Summary/Keyword: Command&Control

Search Result 1,396, Processing Time 0.031 seconds

CLOS Guidance Performance Improvement with Effective Glint Filtering (표적 Glint의 효과적인 필터링에 의한 CLOS 유도성능 개선)

  • Sin, Sang-Jin;Song, Taek-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.711-715
    • /
    • 2001
  • In this paper, an effective filter structure for filtering of target glint in tracking radar systems is used to improve the performance of CLOS(Command to Line-Of-Sight) guidance. The filter decouples range and angel channels to that it has a sound mathematical basis as well as computation efficiency as applied to the IMM algorithm. The effective filter structure in conjunction with CLOS guidance is tested by a series of simulation runs and it is shown to have superior performance compared with the other filter structures.

  • PDF

Satellite Attitude Control on Reaction Wheel Low-Speed Region (반작용휠 저속구간에서의 위성자세제어)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.967-974
    • /
    • 2017
  • Reaction wheel shows nonlinear torque response on low-speed region due to friction. Thus precise satellite attitude control on this region is hard to achieve. Previous research tries to solve this problem, by compensating friction or applying dither command. However, due to difficulties of drag torque modeling or frequent zero wheel speed crossing, these methods are not suitable to apply on the real satellite attitude control. To solve this problem, we propose the attitude controller gain adjustment method based on the attitude error.

Nonlinear Model Predictive Control for Multiple UAVs Formation Using Passive Sensing

  • Shin, Hyo-Sang;Thak, Min-Jea;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • In this paper, nonlinear model predictive control (NMPC) is addressed to develop formation guidance for multiple unmanned aerial vehicles. An NMPC algorithm predicts the behavior of a system over a receding time horizon, and the NMPC generates the optimal control commands for the horizon. The first input command is, then, applied to the system and this procedure repeats at each time step. The input constraint and state constraint for formation flight and inter-collision avoidance are considered in the proposed NMPC framework. The performance of NMPC for formation guidance critically degrades when there exists a communication failure. In order to address this problem, the modified optimal guidance law using only line-of-sight, relative distance, and own motion information is presented. If this information can be measured or estimated, the proposed formation guidance is sustainable with the communication failure. The performance of this approach is validated by numerical simulations.

Parameters Estimation Characteristics of Five-Phase Squirrel-Cage Induction Motor within Over Current Load (과전류 부하에서 5상 농형 유도전동기의 정수 특성)

  • Kim, Min-Huei
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.38-46
    • /
    • 2015
  • This paper propose a variable parameter estimations for variable over current load of five-phase squirrel-cage induction motor(IM) to servo control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, torque command of current components, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental within variable over current load at rated input frequency. There are results of stator winding measurement, no-load test, locked-rotor test, variable over current load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

Start-Up Current Control Method for Three-Phase PWM Rectifiers with a Low Initial DC-Link Voltage

  • Gu, Bon-Gwan;Choi, Jun-Hyuk;Jung, In-Soung
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.587-594
    • /
    • 2012
  • When a PWM rectifier has a low DC-link voltage during startup, the output voltage vector cannot be high enough to regulate the input current. This lack of a PWM rectifier output voltage vector can cause an unregulated inrush current when the rectifier operation starts. This paper presents a PWM rectifier start-up current control algorithm for when it starts operation with a lower DC-link voltage than unloaded condition case. To avoid the unregulated inrush current caused by a lack of DC-link voltage, the proposed control scheme regulates the one phase current with one switch chopping and it generates the current command considering the uncontrolled current magnitude information, which is calculated in advance. Simulation and experiment results support the validity of the proposed method.

Development of Convergence System for Home Control under Ubiquitous Circumstance (유비쿼터스 환경에서의 홈제어 융합 시스템 개발)

  • Yoon, Dal-Hwan;Bae, Dong-Joo;Kim, Hyung-Mook;Kwon, Oh-Hoon;Ko, Young-Hyun;Huh, Jeng-Hwa;Kim, Ho-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.363-365
    • /
    • 2006
  • We have developed the convergence system that can control an appliance under ubiquitous circumstance. The system can display the GPS information received from the satellite, several control signal and mobile phone signal. In order to display the information between phone and the PC, we can control program command.

  • PDF

A ESLF-LEATNING FUZZY CONTROLLER WITH A FUZZY APPROXIMATION OF INVERSE MODELING

  • Seo, Y.R.;Chung, C.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.243-246
    • /
    • 1994
  • In this paper, a self-learning fuzzy controller is designed with a fuzzy approximation of an inverse model. The aim of an identification is to find an input command which is control of a system output. It is intuitional and easy to use a classical adaptive inverse modeling method for the identification, but it is difficult and complex to implement it. This problem can be solved with a fuzzy approximation of an inverse modeling. The fuzzy logic effectively represents the complex phenomena of the real world. Also fuzzy system could be represented by the neural network that is useful for a learning structure. The rule of a fuzzy inverse model is modified by the gradient descent method. The goal is to be obtained that makes the design of fuzzy controller less complex, and then this self-learning fuzz controller can be used for nonlinear dynamic system. We have applied this scheme to a nonlinear Ball and Beam system.

  • PDF

Control of a Balance-Beam with Unknown Loads Using the Restoration Angle of a Gimbal

  • Yi Keon-Young;Kim Yong-Jun;Chung Sam-Yong;Han Song-Soo;Lee Sang-Heon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.524-528
    • /
    • 2006
  • A controller built with the gyro effect for a balance-beam can freely control the attitude of an unstructured object by changing the position of an inner gimbal. In this paper, we propose a new balance-beam controller that can detect the inertia of the load to limit the velocity of the load commanded by a user. We found that when there was smaller load inertia, a larger restoration displacement occurred. Therefore, the load can be identified by issuing a predefined command to measure the restoration displacement, which enables us to construct a controller that can limit the angular velocity of the load by planning the motion. Experimental results show the performance of the controller with different loads.

Remote Monitoring and Control of the Real Robot associated with a Virtual Robot

  • Jeon, Byung-Joon;Kim, Dong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.43-48
    • /
    • 2005
  • A robot system encompassing a remote control and monitoring through a virtual robot design is addressed and a tracking problem for a 2D (2 dimension) moving target by a robot vision is chosen as a case study. The virtual robot is developed, and it synchronizes with the real robot by compensating delay time. Two systems are displayed on a remote panel by communicating command and image data. The virtual robot utilizes an OpenGL library in Visual $C^{++}$ environment. Additionally, the remote monitoring and control between the real robot and the virtual robot are accomplished by employing an appropriate data compression in a network communication.

  • PDF

High Performance of Induction Motor Drive with HAl Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF