• Title/Summary/Keyword: Combustion time

Search Result 1,277, Processing Time 0.028 seconds

Implementation of pressure monitoring system(PMS) for ship's engine performance analysis(SEPA) based on the web (웹기반 선박엔진 성능분석용 압력모니터링 시스템 구현)

  • Yang, Hyun-Suk;Kwon, Hyuk-Joo;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.929-935
    • /
    • 2014
  • This paper is study on the pressure monitoring system(PMS) for ship's engine performance analysis( SEPA) based on web, with high speed and accuracy. This system is composed of pressure sensor, monitoring module with multi channel A/D converter, TCP/IP and satellite internet communication system. Existing domestic products measure cylinder pressure when piston of first explosive cylinder reached TDC(the top dead center) point and then measure next cylinder pressure manually each angle divided by a constant rotating interval. But presented system monitors in the local and web computer, using pressure information transmitted from pressure sensor installed on each engine. In this system, it is possible to increase the accuracy of the engine performance analysis because not only each TDC points but cylinder pressures synchronized with the TDC points could be measured in real time, accurately. And therefore, it may be used in a various diagnosis of main engines, such as deviations of each cylinder maximum pressures(Pmax) and the TDC firing positions and combustion conditions.

Characteristics and Identification of Ambient VOCs Sources in Busan Industrial Area (부산시 공입지역 환경 대기 중 VOCs 특성 및 발생원 규명)

  • Cheong, Jang-Pyo;You, Sook-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.644-655
    • /
    • 2011
  • VOCs (Volatile Organic Compounds) have adverse effects on human health and have caused serious global air pollution problems such as ozone depletion and cimate changes. The total of 56 target VOCs were selected to be monitored in this study for 4 years (2006~2009). The VOCs were measured every hour. The concentration of BTEX was higher than the other target compounds. Generally, the levels of VOCs measured in this study were higher than those measured by the other studies because Gamjeon and Jangrim monitering sites are located in industrial areas. The seasonal variations showed that the VOCs were the highest in winter. The temporal variations showed that the VOCs were high during commuting time on weekday. PMF model was used to resolve source types and source contributions of VOCs in this study. Identified sources and quantified contributions resolved by PMF were vehicle exhaust (15.22%), thinning solvent (29.83%), surface coating (17.13%), industries (13.95%), LPG vehicle (15.22%), combustion boiler (7.11%) and biogenic source (6.61%). Thinning solvent and Surface coating were the most contributed sources possibly due to manufactures and automobile garages in Gamjeon and solvent and paint manufactures in Sasang-Gu.

Exchange Rate Changes Cause Conflicting Effects on Improving the Quality and Increasing Market Share of Eco-friendly Vehicles (환율 변화의 친환경 자동차 품질 향상과 시장점유율 확대에 대한 상충효과)

  • Seo, Cheong-Seog
    • Environmental and Resource Economics Review
    • /
    • v.29 no.3
    • /
    • pp.313-333
    • /
    • 2020
  • This paper shows that when the exchange rate changes, there are conflicting effects on improving the quality and increasing market share of eco-friendly vehicles. In a vertically differentiated duopoly model consisting of high quality clean cars and low quality internal combustion engine cars, I set up a two-stage noncooperative game under perfect information that the quality levels and the prices of the cars are competitively determined. The vehicles are assumed to be produced in countries that use distinct currencies. When the exchange rate of the country that produces low quality cars rises, the producer prefers to intensify competition due to the relatively lowed cost, and the incentive for quality improvement arises from the intension of attempting to reduce the degree of differentiation of quality level. At this time, the clean car manufacturing firm tries to avoid competition due to weakened competitiveness, and increases the quality level to expand quality differentiation. However, in this case, the market share of eco-friendly vehicles shrinks. On the other hand, if the exchange rate changes in the opposite direction, the market share of eco-friendly vehicles is expected to increase, but the quality of both cars are deteriorated, causing a conflict effect.

The study for VOCs analysis in long path by open path FT-IR spectrometer (Open path FT-IR spectrometer를 사용한 원거리의 VOCs 측정에 관한 연구)

  • Cho, Nam Wook;Cho, Won Bo;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.108-113
    • /
    • 2014
  • The harmful materials as volatile organic compounds (VOCS) that is easy for gas to be changed from liquid on ambient temperature, those should be controlled by Korea Chemicals Management Association. The VOCs samples should be collected directly in place so that those could be analyzed. Generally but it couldn't avoid to have the risk of analyst. Moreover, if there is the place limited to entrance, it is impossible to collect directly and measure. Owing to such problem, it tried to be solved by open path FT-IR spectrometer that could be studied on the combustion gases within long path and VOCs samples were tried to measure to large volume by remote and real time. Firstly, it was to investigate optimized measured length between the system and benzene sample of VOCs. As result, The optimized measured length was confirmed with 15 meter length and the qualitative analysis could be measured on seven VOC samples. The calibration curve as quantitative analysis of benzene samples could be worked. On the basis of the result, the system as remote monitor could show to have potentiality.

Application of Isocyanate and Modified Polyester Containing Phosphorous and Chlorine to Crosslinked PU Flame-Retardant Coatings (인과 염소 함유 변성폴리에스터/이소시아네이트 가교 폴리머의 PU 난연도료에의 적용)

  • Park, Hong-Soo;Kim, Song-Hyoung;Ahn, Sung-Hwan;Yoo, Gyu-Yeol;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.124-139
    • /
    • 2007
  • In order to obtain the maximum flame retardancy with the minimal deterioration of physical properties of PU flame-retardant coatings, chlorine and phosphorous functional groups were introduced into the pre-polymer of modified polyesters. In the first step, the tetramethylene bis(orthophosphate) (TBOP) and neohexanediol dichloroacetate (DCA-adduct) intermediates were synthesized. In the second step, 1,4-butanediol and adipic acid monomers were polymerized with the two kind of intermediates to obtain copolymer. The modified polyesters containing chlorine and phosphorous (ATBA-10C, -20C, and -30C) were synthesized by adjusting the contents of chlorine compound (dichloroacetic acid, 10, 20, 30 wt%) with fixed the content of phosphorous compound (2 wt%). The PU flame-retardant coatings (TTBAH -10C, -20C, and -30C) were prepared using the synthesized ATBAs and HDI-trimer as curing agent at room temperature. The physical properties of PU flame-retardant coatings with chlorine and phosphorous were inferior to those with phosphorous only and the properties were getting worse with increasing chlorine content. Flame retardancy was tested with three methods. With the vertical method, Complete combustion time of ATBAHs were $259^{\sim}347$ seconds, which means that the prepared coatings are good flame-retardant. With the $45^{\circ}$ Meckel burner method, char lengths of the three prepared coatings were less than 2.9 cm, which indicates that the prepared coatings are 1st grade flame retardancy. With the limiting oxygen index (LOI) method, the LOI values of the three prepared coatings were in the range of $30^{\sim}35%$, which proves good flame retardancy of the prepared coatings. From the results of flame retardancy tests of the specimens that contain the same amounts of flame retarding compounds, it was found that the coatings containing both phosphorous and chlorine show higher flame retardancy than the coatings containing phosphorous alone. This indicates that some synergy effect of flame retardancy exists between phosphorous and chlorine.

Aethalometer-based Estimate of Mass Absorption Cross Section of Black Carbon Particles at an Urban Site of Gwangju (광주 지역에서 aethalometer 측정 블랙 카본 입자의 질량흡수단면 평가)

  • Park, Seung-Shik;Yu, Geun-Hye;Lee, Sang-Il;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.727-734
    • /
    • 2018
  • In this study, real-time absorption coefficients of carbonaceous species in $PM_{2.5}$ was observed using a dual-spot 7-wavelength Aethalometer between November 1, 2016 and December 31, 2017 at an urban site of Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were simultaneously collected at the same site and analyzed for organic carbon and elemental carbon (OC and EC) using the thermal-optical transmittance protocol. A main objective of this study was to estimate mass absorption cross section (MAC) values of black carbon (BC) particles at the study site using the linear regression between aethalometer-based absorption coefficient and filter-based EC concentration. BC particles observed at 880 nm is mainly emitted from combustion of fossil fuels, and their concentration is typically reported as equivalent BC concentration (eBC). eBC concentration calculated using MAC value of $7.77m^2/g$ at wavelength of 880 nm, which was proposed by a manufacturer, ranged from 0.3 to $7.4{\mu}g/m^3$ with an average value of $1.9{\pm}1.2{\mu}g/m^3$, accounting for 7.3% (1.5~20.9%) of $PM_{2.5}$. The relationship between aerosol absorption coefficients at 880 nm and EC concentrations provided BC MAC value of $15.2m^2/g$, ranging from 11.4 to $16.2m^2/g$. The eBC concentrations calculated using the estimated MAC of $15.2m^2/g$ were significantly lower than those reported originally from aethalometer, and ranged from 0.2 to $3.8{\mu}g/m^3$, with an average of $1.0{\pm}0.6{\mu}g/m^3$, accounting for 3.7% of $PM_{2.5}$ (0.8~10.7%). Result from this study suggests that if the MAC value recommended by the manufacturer is applied to calculate the equivalent BC concentration and radiative forcing due to BC absorption, they would result in significant errors, implying investigation of an unique MAC value of BC particles at a study site.

Study of SNCR Application to Industrial Boiler for NOx Control (산업용 보일러의 질소산화물 제어를 위한 SNCR 적용 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.286-292
    • /
    • 2005
  • This study is to investigate the industrial boiler which can be significantly affected by the restriction of NOx. Note that the application of SNCR method to industrial boiler is usually blown as not feasible due to the insufficient residence time for proper mixing. The purpose of this study is to investigate the applicability of the SNCR system application to the industrial boiler, which produces 40 tons of steam per hour using heavy oil. For the industrial boiler with 3-D rectangular coordinate, the general coding are made fur various turbulence modeling such as turbulent flow, turbulent fuel combustion, thermal NO formation and destruction together with the NO reaction with reducing agents. Further, the incorporation of drop trajectory model is successfully made in 3-D rectangular coordinate with Lagrangian frame and the main swirl burner effect on the characteristics of flame is considered. As expected a short flame was created and thereby NOx is removed more efficiently by increasing the proper region of temperature for NO reduction reaction. The validation of program was made successfully by the comparison of experimental data. Based on the reliable calculation results, the SNCR method in a industrial boiler shows the possibility as one of viable NO reduction method by the use of well designed mixing air of reducing agent.

Conversion Characteristics of Liquid Fuels from Sawdust by Acetone-Solvolysis (아세톤-용매분해반응에 의한 톱밥으로부터 액체 연료물질의 전환 특성 연구)

  • Yoon, Sung Wook;Lee, Jong-Jib
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.231-236
    • /
    • 2014
  • Sawdust, produced as an wood by-product, is usable biomass as liquid fuels if decomposed to monomer unit, because the chemical structure are similar to high octane materials found in gasoline. In this study, parameters of thermochemical degradation by acetone-solvolysis reaction of sawdust such as the effect of reaction temperature, reaction time and type of solvent on conversion yield and degradation products were investigated. The liquid products by acetone-solvolysis from sawdust produced various kind of ketone, phenol and furan compounds. The optimum sawdust conversion was observed to be 88.7% at $350^{\circ}C$, 40min. Combustion heating value of liquid products from thermochemical conversion processes was as high as 7,824 cal/g. The energy yield and mass yield in acetone-solvolysis of sawdust was 60.8% and 36.4 g-oil/100g-sawdust after 40 min of reaction at $350^{\circ}C$, respectively. The major components of the acetone-solvolysis products, that could be used as liquid fuel, were 4-methyl-3-pentene-2-one, 1,3,5-trimethylbezene, 2,6-dimethyl-2,5-heptadiene-4-one, 3-methyl-2-cyclopenten-1-one as ketone compounds.

Pyrolytic Gasification Characteristics of Waste Tires and Waste Synthetic Resins (폐타이어 및 폐합성수지류의 건류가스화 특성)

  • 노남선;김광호;신대현;김동찬
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 2000
  • Characteristics of pyrolytic gasification were examined for the waste tire and 7 types of waste synthetic resin, using a bench scale experimental facility. the product gas temperature of waste tires was $150~300^{\circ}C$ and the temperature profile in the combustion zone of the lower reactor part tended to be clearly distinguished from that in the gasification zone of the upper part. However, in the case of waste synthetic resins, there were no clear distinction and temperature fluctuation was severe, depending on the reaction time. Product gas quantity, which depends on that of supplied (1st) air, was found to be 105~135% of the 1st air amount at the steady state. The concentration of noncombustible components in product gas was 80~90 vol.% and the high heating value of the product gas calculated from gas compositions was 1,500~3,000 kcal/N㎥ for waste tire, and 300~2,900 kcal/N㎥ for waste synthetic resins, respectively. Heating value of product gas and combustible gas concentration were increased in proportion to 1st air amount when 1st air amount is below $0.35N\textrm{m}^3$/min.

  • PDF

Analysis of cause of engine failure during power generation using biogas in sewage treatment plant (하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.13-29
    • /
    • 2016
  • In this study, we analyzed the causes of major faults in the biogas plant through the case of gas engine failure when cogenerating electricity and heat using biogas as a fuel in the actual sewage treatment plant and suggested countermeasures. Hydrogen sulfide in the biogas entering the biogas engine and water caused by intermittent malfunction of the water removal system caused intercooler corrosion in the biogas engine. In addition, the siloxane in the biogas forms a silicate compound with silicon dioxide, which causes scratches and wear of the piston surface and the inner wall of the cylinder liner. The substances attached to the combustion chamber and the exhaust system were analyzed to be combined with hydrogen sulfide and other impurities. It is believed that hydrogen sulfide was supplied to the desulfurization plant for a long period of time because of the high content of hydrogen sulfide (more than 50ppm) in the biogas and the hydrogen sulfide was introduced into the engine due to the decrease of the removal efficiency due to the breakthrough point of the activated carbon in the desulfurization plant. In addition, the hydrogen sulfide degrades the function of the activated carbon for siloxane removal of the adsorption column, which is considered to be caused by the introduction of unremoved siloxane waste into the engine, resulting in various types of engine failure. Therefore, hydrogen sulfide, siloxane, and water can be regarded as the main causes of the failure of the biogas engine. Among them, hydrogen sulfide reacts with other materials causing failure and can be regarded as a substance having a great influence on the pretreatment process. As a result, optimization of $H_2S$ removal method seems to be an essential measure for stable operation of the biogas engine.