• Title/Summary/Keyword: Combustion source

Search Result 490, Processing Time 0.026 seconds

A cutting Experiments the materials by using heat source of the Hybrid Propulsion System Combustion (하이브리드 로켓 추진장치 연소 열원을 이용한 절단기초실험)

  • Yoo, Doc-Koon;Kim, Soo-Jong;Kim, Jin-Kon;Koo, Ja-Ye;Moon, Hee-Jang;Lee, Bo-Young;Kil, Seong-Mahn;Oh, Jae-Young;Kuk, Tae-Seung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.344-349
    • /
    • 2003
  • The purpose of this study is to ascertain the ability of New type cutter using Hybrid Rocket Propulsion System to cut normal carbon steel and also compound metal like stainless steel which cannot be cut by regular oxygen-acetylene cutter. To compare cutting performance, Two different types of experiment with oxygen-acetylene and Hybrid Combustion cutters were performed. As a result, Hybrid Combustion cutter is used to cut both carbon steel and stainless steel with cutting speed of 400mm/min(carbon steel) and 250mm/min(stainless steel). Otherwise, oxygen-acetylene cutter can be used to cut only carbon steel with cutting speed of 500 $^{\sim}$ 700mm/min. The possibility of Hybrid Combustion cutter as a cutting machine was confirmed.

  • PDF

Catalyst Preparations, Coating Methods, and Supports for Micro Combustor (초소형 연소기를 위한 촉매 합성, 담지방법 및 담지체)

  • Jin, Jung-Kun;Kim, Chung-Ki;Lee, Sung-Ho;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.2
    • /
    • pp.7-14
    • /
    • 2006
  • Catalytic combustion is one of the suitable methods for micro power source due to high energy density and it can be applied to micro structured chamber without consideration of quenching since it is flameless combustion. Catalyst loading in the micro structured combustion chamber is one of the most important issues in the development of micro catalytic combustors. In this research, to coat catalyst on the chamber wall, two methods were investigated. First, $Al_2O_3$ was selected as a support of Pt and $Pt/Al_2O_3$ was synthesized through the alumina sol-gel procedure. To improve the coating thickness and adhesion between catalyst and substrate, heat resistant and water solvable organic-inorganic hybrid binder was used. Porous silicon was also investigated as a catalyst support for platinum. Through the parametric studies of current density and etching time, fabrication process of $1{\sim}2{\mu}m$ of diameter and about $25{\mu}m$ depth pores was confirmed. Coated substrates were test in the micro channel combustor which was fabricated by the wet etching and machining of SUS 304. Using $Pt/Al_2O_3$ coated substrate and Pt coated porous silicon substrate, conversion rate of fuel was over 95 % for $H_2/Air$ premixed gas.

  • PDF

Design and Development of Micro Combustor (I) - Combustion Characteristics in Scale-Downed Combustor - (미세 연소기 개발(I) - 소형 연소기 환경에서의 연소 특성 -)

  • Lee, Dae-Hun;Choe, Gwon-Hyeong;Gwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.74-81
    • /
    • 2002
  • Combustion phenomena in a sub-millimeter scale combustor have been investigated. To evaluate scale effect on flame propagation characteristics, a cylindrical combustion chamber with variable depth was built in-house. The combustor was charged with premixed gas of hydrogen and air and ignited electronically. A piezo electric pressure transducer recorded transient pressure after the ignition. Measurements were made at different test conditions specified with chamber depth and initial pressure as parameters. Visual observation was made through a quartz glass window on top side of the combustion chamber using high speed digital video camera. From the pressure data, available work was estimated and compared with energy input required for stable ignition. The preliminary results suggested that the net thermal energy release is sufficient to generate power and enables a combustor of the size in the present study to be used as the energy source of a micro power devices .

The Effects of Secondary Fuel Injection on Combustion Oscillation

  • Shigeru Tachibana;Laurent Zimmer;Park, Gyung-Min;Takeshi Yamamoto;Ufosawa, Yoji-K;Seiji Yoshida;Kazuo Suzuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.376-379
    • /
    • 2004
  • The purpose of this work is to develop an effective active control system for combustion instabilities of premixed combustors. For the first step, the natural modes of combustion oscillation were investigated for a methane-air premixed combustor and the controls by secondary fuel injection were examined. The main premixed flame is stabilized by a swirler with orifices for secondary injection installed on the central hub. For sensing purposes, a pressure transducer and a chemiluminescence sensor were placed on the appropriate positions. The acoustic characteristics and the source of the oscillation were analyzed by those signals. To test the controllability, two methods of actuations by secondary fuel injection were examined. One is the open loop control and the other is the closed loop control. The comparison of the reduction levels of p $_{rms}$ shows that the closed loop control with a phase-shift injection performs best in this condition.ition.n.

  • PDF

Investigation of the Fire Source in the Warehouse under Bridge using FDS Code (FDS code를 이용한 교량하부창고 화재발생원 영향분석)

  • Zi, Goang-Seup;Lee, Seung-Jung;Shin, Yeon-Ho;Shim, Jae-Won;Kim, Ji-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.663-673
    • /
    • 2011
  • In this study, we analysed the effect of the fire source in the warehouse under the bridge and the height of the bridge using FDS code. To compare accuracy of simulation results, we simulated the experimental result with unit combustibles which is heptane as well as the mock-up test. Using this method, we evaluated the fire safety of the bridge which contains spalling and strength damage of concrete as well as damage of reinforcements according to the fire source and the height of the bridge. Most of the bridges are vulnerable to spalling of concrete. The book combustion has the strongest fire intensity which is expected to damage the bridge less than 30m height in the three types of the fire sources. The bridge over the 30m height can ensure the fire safety in the case of the rubber combustion.

Possibility of Are Tracking at the Circuit Breaker After Starting Fire (화재발생 이후 분전반 차단기에서의 트래킹현상 진행 가능성)

  • Park, Y.G.;Oh, D.H.;Lee, S.H.;Park, J.T.;Kim, J.P.
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.10 no.1
    • /
    • pp.37-45
    • /
    • 2007
  • In this paper, the possibility of arc tracking, caused by combustion at the circuit breaker, was discussed. The arc tracking, occurred at the source terminals of all the circuit breakers, when we burned electric leakage circuit breakers with 220V applied. We had a same results of the experiment to simulate fire scene, in the circumstance of fire, all of the circuit breakers had arc tracking caused by combustion. Therefore we confirmed that the arc tracking at the source terminal of circuit breaker could be occurred by just combustion in the fire scene, and it was impossible to decide the cause of fire for reason of discriminating arc tracking at the terminals of circuit breaker.

  • PDF

Size-resolved Source Apportionment of Ambient Particles by Positive Matrix Factorization at Gosan, Jeju Island during ACE-Asia (PMF 분석을 이용한 ACE-Asia 측정기간 중 제주 고산지역 입자상 물질의 입경별 발생원 추정)

  • Moon K.J.;Han, J.S.;Kong, B.J.;Jung, I.R.;Cliff Steven S.;Cahill Thomas A.;Perry Kelvin D.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.590-603
    • /
    • 2006
  • Size-and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM) sampler from 23 March to 29 April 2001 at Gosan, Jeju Island, Korea, which is one of the super sites of Asia-Pacific Regional Aerosol Characterization Experiment(ACE-Asia). These samples were analyzed using synchrotron X-ray fluorescence for 3-hr average concentrations of 19 elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, and Pb. The size-resolved data sets were then analyzed using the positive matrix factorization(PMF) technique to identify possible sources and estimate their contributions to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Twelve sources were resolved in eight size ranges($0.09{\sim}12{\mu}m$) and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil combustion, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, and volcanic emission. The PMF result of size-resolved source contributions showed that natural sources represented by local soil, sea salt, continental soil, and volcanic emission contributed about 79% to the predicted primary particulate matter(PM) mass in the coarse size range ($1.15{\sim}12{\mu}m$) while anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 58% in the fine size range($0.56{\sim}2.5{\mu}m$). The diesel vehicle source contributed mostly in ultra-fine size range($0.09{\sim}0.56{\mu}m$) and was responsible for about 56% of the primary PM mass.

Health Risk Assessment with Source Apportionment of Ambient Volatile Organic Compounds in Seoul by Positive Matrix Factorization (수용체 모델(PMF)를 이용한 서울시 대기 중 VOCs의 배출원에 따른 위해성평가)

  • Kwon, Seung-Mi;Choi, Yu-Ri;Park, Myoung-Kyu;Lee, Ho-Joon;Kim, Gwang-Rae;Yoo, Seung-Sung;Cho, Seog-Ju;Shin, Jin-Ho;Shin, Yong-Seung;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.384-397
    • /
    • 2021
  • Background: With volatile organic compounds (VOCs) containing aromatic and halogenated hydrocarbons such as benzene, toluene, and xylene that can adversely affect the respiratory and cardiovascular systems when a certain concentration is reached, it is important to accurately evaluate the source and the corresponding health risk effects. Objectives: The purpose of this study is to provide scientific evidence for the city of Seoul's VOC reduction measures by confirming the risk of each VOC emission source. Methods: In 2020, 56 VOCs were measured and analyzed at one-hour intervals using an online flame ionization detector system (GC-FID) at two measuring stations in Seoul (Gangseo: GS, Bukhansan: BHS). The dominant emission source was identified using the Positive Matrix Factorization (PMF) model, and health risk assessment was performed on the main components of VOCs related to the emission source. Results: Gasoline vapor and vehicle combustion gas are the main sources of emissions in GS, a residential area in the city center, and the main sources are solvent usage and aged VOCs in BHS, a greenbelt area. The risk index ranged from 0.01 to 0.02, which is lower than the standard of 1 for both GS and BHS, and was an acceptable level of 5.71×10-7 to 2.58×10-6 for carcinogenic risk. Conclusions: In order to reduce the level of carcinogenic risk to an acceptable safe level, it is necessary to improve and reduce the emission sources of vehicle combustion and solvent usage, and eco-car policies are judged to contribute to the reduction of combustion gas as well as providing a response to climate change.

Source Identification of Ambient Size-by-Size Particulate Using the Positive Matrix Factorization Model on the Border of Yongin and Suwon (PMF 모델을 이용한 용인-수원경계지역에서의 부유분진의 크기별 오염원 확인)

  • Oh, Mi-Seok;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.108-121
    • /
    • 2009
  • The suspended particulate matters have been collected on membrane filters and glass fiber filters by an 8-stage cascade impactor for 2 years (Sep. 2005${\sim}$Sep. 2007) in Kyung Hee University-Global Campus located on the border of Yongin and Suwon. The 20 chemical species (Al, Mn, Si, Fe, Cu, Pb, Cr, Ni, V, Cd, Ba, $Na^+$, ${NH_4}^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$) were analyzed by an ICP-AES and an IC after performing proper pre-treatments of each sample filter. Based on these chemical information, the PMF receptor model was applied to identify the source of ambient size-by-size particulate matters. The receptor modeling is the one of the statistical methods to achieve resonable air pollution management strategies. A total of 10 sources was identified in 9 size-ranges such as long-range transport, secondary aerosol, $NH_{4}NO_{3}$ related source, coal combustion, sea-salt, soil, oil combustion, auto emission, incineration, and biomass burning. Especially, the secondary aerosol source assorted in fine and coarse modes was intensively studied.

Study on the Suitability of Heat Source for Thermoelectric Cells Using Porous Iron Powder (다공성 철 분말을 이용한 열전지용 열원 적합성 연구)

  • Kim, Ji Youn;Yoon, Hyun Ki;Im, Chae Nam;Cho, Jang-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.377-385
    • /
    • 2022
  • Thermal batteries are specialized as primary reserve batteries that operate when the internal heat source is ignited and the produced heat (450~550℃) melts the initially insulating salt into highly conductive eutectic electrolyte. The heat source is composed of Fe powder and KClO4 with different mass ratios and is inserted in-between the cells (stacks) to allow homogeneous heat transfer and ensure complete melting of the electrolyte. An ideal heat source has following criteria to satisfy: sufficient mechanical durability for stacking, appropriate heat calories, ease of combustion by an igniter, stable combustion rate, and modest peak temperature. To satisfy the aforementioned requirements, Fe powder must have high surface area and porosity to increase the reaction rate. Herein, the hydrothermal and spray drying synthesis techniques for Fe powder samples are employed to investigate the physicochemical properties of Fe powder samples and their applicability as a heat source constituent. The direct comparison with the state-of-the-art Fe powder is made to confirm the validity of synthesized products. Finally, the actual batteries were made with the synthesized iron powder samples to examine their performances during the battery operation.