DOI QR코드

DOI QR Code

Source Identification of Ambient Size-by-Size Particulate Using the Positive Matrix Factorization Model on the Border of Yongin and Suwon

PMF 모델을 이용한 용인-수원경계지역에서의 부유분진의 크기별 오염원 확인

  • Oh, Mi-Seok (College of Environment & Applied Chemistry and Center for Environmental Studies, Kyung Hee University-Global Campus) ;
  • Lee, Tae-Jung (College of Environment & Applied Chemistry and Center for Environmental Studies, Kyung Hee University-Global Campus) ;
  • Kim, Dong-Sool (College of Environment & Applied Chemistry and Center for Environmental Studies, Kyung Hee University-Global Campus)
  • 오미석 (경희대학교 환경.응용화학대학 대기오염연구실 및 환경연구센터) ;
  • 이태정 (경희대학교 환경.응용화학대학 대기오염연구실 및 환경연구센터) ;
  • 김동술 (경희대학교 환경.응용화학대학 대기오염연구실 및 환경연구센터)
  • Published : 2009.04.30

Abstract

The suspended particulate matters have been collected on membrane filters and glass fiber filters by an 8-stage cascade impactor for 2 years (Sep. 2005${\sim}$Sep. 2007) in Kyung Hee University-Global Campus located on the border of Yongin and Suwon. The 20 chemical species (Al, Mn, Si, Fe, Cu, Pb, Cr, Ni, V, Cd, Ba, $Na^+$, ${NH_4}^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$) were analyzed by an ICP-AES and an IC after performing proper pre-treatments of each sample filter. Based on these chemical information, the PMF receptor model was applied to identify the source of ambient size-by-size particulate matters. The receptor modeling is the one of the statistical methods to achieve resonable air pollution management strategies. A total of 10 sources was identified in 9 size-ranges such as long-range transport, secondary aerosol, $NH_{4}NO_{3}$ related source, coal combustion, sea-salt, soil, oil combustion, auto emission, incineration, and biomass burning. Especially, the secondary aerosol source assorted in fine and coarse modes was intensively studied.

Keywords

References

  1. 강승우, 김동술(2000) 황사의 오염원 분류표 개발을 위한 개별입자 분석, 한국대기환경학회지, 16(6), 565- 572
  2. 기상청(2006~2008) 기상원보
  3. 수원시(2008) 수원시 환경과 개인교신
  4. 오미석(2008a) Cascade Impactor를 이용한 수원지역 부유분진 오염원의 정량적 추정에 관한 연구, 경희대학교대학원 환경응용과학과 석사학위논문
  5. 오미석, 이태정, 김동술(2008b) 수원지역 분진의 입경별 이온성분 분포특성에 관한 연구, 한국대기환경학회지, 25(1), 46-56
  6. 용인시(2008) 용인시 환경과 개인교신
  7. 이민희, 한의정, 신찬기, 한진석(1988) 황사의 입경분포와 성분조성에 관하여, 한국대기환경학회 학술대회논문집, 1, 38-40
  8. 황인조, 김태오, 김동술(2001) PMF 방법론을 이용한 수원지역 PM-10의 오염원 확인, 한국대기환경학회지, 17(2), 133-145
  9. 황인조(2003) PMF 모델을 이용한 대기 중 PM-10 오염원의 정량적 기여도 추정, 경희대학교대학원 환경학과 박사학위논문
  10. Appel, B.R., Y. Tokiwa, J. Hsu, E.L. Kothny, and E. Hann (1985) Visibility as related to atmospheric aerosol constituents, Atmospheric Environment, 20, 1969- 1977 https://doi.org/10.1016/0004-6981(85)90290-2
  11. Chow, J.C. (1995) Measurement methods to determine compliance with ambient air quality standards for suspended particles, J. Air & Waste Manage. Assoc., 45, 320-382 https://doi.org/10.1080/10473289.1995.10467369
  12. Han, J.S., K.J. Moon, S.J. Lee, Y.J. Kim, S.Y. Ryu, S.S. Cliff, and S.M. Yi (2006) Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia, Atmospheric Chemistry and Physics, 6, 211-223 https://doi.org/10.5194/acp-6-211-2006
  13. Hidy, G.M. (1972) Aerosols and Atmospheric Chemistry, Academic Press
  14. Hopke, P.K. (1985) Receptor Modeling in Environmental Chemistry, John Wiley & Sons
  15. Hopke, P.K. (2000) A guide to Positive Matrix Factorization, in Workshop on UNMIX and PMF as applied to PM2.5. Edited by R.D. Willis, RTP, NC, EPA 600/A-00/048
  16. John, W., S.M. Wall, J.L Ondo, and W. Winklmayr (1990) Modes in the size distribution of atmospheric inorganic aerosol, Atmospheric Environment, 24A, 2349- 2359 https://doi.org/10.1016/0960-1686(90)90327-J
  17. Jonson, J.E., A. Semb, K. Barrett, A. Grini, and L. Tarrason (2000) On the distribution of sea salt and sodium nitrate particles in Europe, Transport and Chemical Transportation in the Troposphere, Proceedings of the EUROTRAC symposium, 6th, Gaimisch-Partenkirchen, Germany, 27-31 March 2000, 695-699
  18. Juntto, S. and P. Paatero (1994) Analysis of daily precipitation data by positive matrix factorization, Environmetrics, 5, 127-144 https://doi.org/10.1002/env.3170050204
  19. Khoder, M.I. (2002) Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen nitric acid in an urban area, Chemosphere, 49, 675-684 https://doi.org/10.1016/S0045-6535(02)00391-0
  20. Kim, E., P.K. Hopke, and Y. Qin (2005) Estimation of organic carbon blank values and error structures of the speciation trend network data for source apportionment, J. Air & Waste Manage. Assoc., 55, 1190-1199 https://doi.org/10.1080/10473289.2005.10464705
  21. Kim, E., T.V. Larson, P.K. Hopke, C. Slaughter, L.E. Sheppard, and C. Claibom (2003) Source identification of PM2.5 in an arid Northwest U.S. City by positive marix factorization, Atmospheric Research, 66, 291- 305 https://doi.org/10.1016/S0169-8095(03)00025-5
  22. Lee, E., C.K. Chan, and P. Paatero (1999) Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong, Atmospheric Environment, 33(19), 3201-3212 https://doi.org/10.1016/S1352-2310(99)00113-2
  23. Lee, J.H., Y. Youshida, B.J. Turpin, P.K. Hopke, R.L. Poirot, P.J. Lioy, and J.C. Oxley (2002) Identification of sources contributing to Mid-Atlantic regional aerosol, J. Air & Waste Manage. Assoc., 52(10), 1186-1205 https://doi.org/10.1080/10473289.2002.10470850
  24. Morawska, L. and J. Zhang (2002) Combustion sources of particles. 1. Health relevance and source signatures, Chemosphere, 49, 1045-1058 https://doi.org/10.1016/S0045-6535(02)00241-2
  25. Paatero, P. and U. Tapper (1994) Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetric, 5, 111-126 https://doi.org/10.1002/env.3170050203
  26. Paterson, K.G., J.L. Sagady, D.L. Hooper, S.T. Bertman, M.A. Carroll, and P.B. Shepson (1999) Analysis of air quality data using positive matrix factorization, Environ. Sci. & Technol., 33(4), 635-641 https://doi.org/10.1021/es980605j
  27. Polissar, A.V., P.K. Hopke, P. Paatero, W.C. Malm, and J.F. Sisler (1998) Atmospheric aerosol over Alaska, 2. Elemental composition and sources, J. of Geophysical Research, 103(D15), 19045-19057 https://doi.org/10.1029/98JD01212
  28. Polissar, A.V., P.K. Hopke, and R.D. Poirot (2001) Atmospheric aerosol over Vermont: Chemical composition and sources, Environ. Sci. & Technol., 35(23), 4604-4621 https://doi.org/10.1021/es0105865
  29. Ramadan, Z., X.H. Song, and P.K. Hopke (2000) Identification of sources of Phonix aerosol by positive matrix fac- torization, J. Air & Waste Manag. Assoc., 50(8), 1308-1320 https://doi.org/10.1080/10473289.2000.10464173
  30. Schroeder, W.H., M. Dobson, D.M. Kane, and N.D. Johnson (1987) Toxic trace elements associated with airborne particulate matter: a review, Journal of the Air Pollution Control Association, 37(10), 1267-1285
  31. Song, X.H., A.V. Polissar, and P.K. Hopke (2001) Source of fine particle composition in the northeastern US, Atmospheric Environment, 35(31), 5277-5286 https://doi.org/10.1016/S1352-2310(01)00338-7
  32. U.S. EPA (1999) Air Quality Criteria for Particulate Matter, Volume I, EPA/600/p-99/002a.
  33. U.S. EPA (1999a) SPECIATE Ver 3.1
  34. Watson, J.G. and J.C. Chow (1994) Ammonium nitrate, nitric acid and ammonia equilibrium in wintertime phoenix Arizona, Air & Waste Manage. Assoc., 44, 405- 412
  35. Watson, J.G., T. Zhu, J.C. Chow, E.J. Engelbrecht, E.M. Fujita, and W.E. Wilson (2002) Receptor modeling application framework for particle source apportionment, Chemosphere, 49(9), 1093-1136 https://doi.org/10.1016/S0045-6535(02)00243-6
  36. Wilson, W.E., J.C. Chow, C. Claiborn, W. Fusheng, J. Engelbrecht, and J.G. Watson (2002) Monitoring of particulate matter outdoors, Chemosphere, 49, 1009- 1043 https://doi.org/10.1016/S0045-6535(02)00270-9

Cited by

  1. in the Subway Passenger Cabins vol.27, pp.5, 2011, https://doi.org/10.5572/KOSAE.2011.27.5.523
  2. fine particulate matter for Asian dust and haze events of 2010-2011 at Gosan site in Jeju Island vol.27, pp.1, 2014, https://doi.org/10.5806/AST.2014.27.1.1
  3. A Study on Estimation of Air Pollutants Emission from Wood Stove and Boiler, Wood-pellet Stove and Boiler vol.30, pp.3, 2014, https://doi.org/10.5572/KOSAE.2014.30.3.251
  4. Acidification and neutralization characteristics of size-fractionated atmospheric aerosols at Gosan site of Jeju Isalnd vol.28, pp.1, 2015, https://doi.org/10.5806/AST.2015.28.1.47
  5. Analytical methods for atmospheric particulate aerosols: Focused on the physical properties and chemical composition of metals and water soluble ionic compounds vol.28, pp.3, 2015, https://doi.org/10.5806/AST.2015.28.3.139
  6. PM10 and PM2.5 Characterization based on Mass Concentration Long-term (1989 ~ 2012) Database in Yongin-Suwon Area vol.31, pp.3, 2015, https://doi.org/10.5572/KOSAE.2015.31.3.209
  7. Study on Chemical Characterization of PM2.5 based on Long-term Database (1990 ~ 2012) and Development of Chemical Species Profiles During Haze Days and Asian Dust Days in Yongin-Suwon Area vol.31, pp.3, 2015, https://doi.org/10.5572/KOSAE.2015.31.3.223
  8. Characteristics of Aerosol Mass Concentration and Chemical Composition of the Yellow and South Sea around the Korean Peninsula Using a Gisang 1 Research Vessel vol.26, pp.3, 2016, https://doi.org/10.14191/Atmos.2016.26.3.357