• Title/Summary/Keyword: Combustion source

Search Result 490, Processing Time 0.028 seconds

Distributions and Sources of Polycyclic Aromatic Hydrocarbons in the Tidal Flat Sediments from Incheon Coastal Area (인천연안 갯벌의 다환방향족탄화수소의 농도분포와 발생원 평가)

  • Park, Jung Hwan;Lee, Choong Dae;Kim, Jin Han
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.441-451
    • /
    • 2013
  • Samples for estimating concentrations of polycyclic aromatic hydrocargons(PAHs), total petroleum hydrocarbons(TPHs), and benzene-toluene-ethylbenzene-xylene(BTEX) were collected at the tidal flat sediments of 8 coastal sites in Incheon, at seventy-two sampling stations for the surface sediment and twenty-four stations for the sediment core, twice in the spring and fall in 2011. This study was performed to evaluate the distributions of seasonal and spatial concentrations of PAHs, TPHs, and BTEX in the tidal flat sediments. The source origin of PAHs were carried out. The total average concentration of PAHs in the tidal flat sediment was $95.62{\mu}g/kg$. The characteristic of PAHs concentration distributions was observed that the average concentration in the autumn was lower than that in the spring, and higher concentration in the sediment core than the surface sediment, and greater vertical concentration at the top rather than the bottom in the sediment core. The total average concentration of TPHs at all sampling sites was in the value of 46 mg/kg. The characteristic of the TPHs concentration distribution was observed that the average concentration in the fall was much higher than that in the spring, and higher concentration in the surface sediment than the sediment core. The possible source of PAHs inputs were mainly derived from both pyrogenic and petrogenic origin at the surface sediment at Janghwari site and the sediment cores of both Sorae and Okyeon sites, while the rest sites of study areas originated with pyrogenic combustion.

Characteristics and Identification of Ambient VOCs Sources in Busan Industrial Area (부산시 공입지역 환경 대기 중 VOCs 특성 및 발생원 규명)

  • Cheong, Jang-Pyo;You, Sook-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.644-655
    • /
    • 2011
  • VOCs (Volatile Organic Compounds) have adverse effects on human health and have caused serious global air pollution problems such as ozone depletion and cimate changes. The total of 56 target VOCs were selected to be monitored in this study for 4 years (2006~2009). The VOCs were measured every hour. The concentration of BTEX was higher than the other target compounds. Generally, the levels of VOCs measured in this study were higher than those measured by the other studies because Gamjeon and Jangrim monitering sites are located in industrial areas. The seasonal variations showed that the VOCs were the highest in winter. The temporal variations showed that the VOCs were high during commuting time on weekday. PMF model was used to resolve source types and source contributions of VOCs in this study. Identified sources and quantified contributions resolved by PMF were vehicle exhaust (15.22%), thinning solvent (29.83%), surface coating (17.13%), industries (13.95%), LPG vehicle (15.22%), combustion boiler (7.11%) and biogenic source (6.61%). Thinning solvent and Surface coating were the most contributed sources possibly due to manufactures and automobile garages in Gamjeon and solvent and paint manufactures in Sasang-Gu.

Spatial and Vertical Distribution of Polycyclic Aromatic Hydrocarbons in Sediment of the Shipyard Area in Gohyeon Bay (고현만 조선소 주변해역 퇴적물내 다환방향족탄화수소의 시공간적 분포특성)

  • Park, Pan-Soo;Kim, Nam-Sook;Yim, Un-Hyuk;Shim, Won-Joon;Kim, Gi-Beum
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.68-74
    • /
    • 2009
  • Polycyclic aromatic hydrocarbons (PAHs), one of ubiquitous organic pollutants in marine environments, are major toxic components of petroleum and are produced during the incomplete combustion of organic materials. As shipyards are located inside of natural or artificial semi-enclosed bay, even a relatively weak environmental disturbance by ship-building activity can cause severe damage to marine ecosystem in the bay. Many studies of pollution in shipyard area have been focused on the antifouling agent, like tributyltin. This study aimed to investigate the effect of ship-building activity on PAH contamination. Total PAHs concentration was higher nearby and inside shipyard area than outside, implying that shipyard could be one of major source area of PAH contamination to pose harmful effects to surrounding environments. Through PAH profile and source recognition index, the source of PAHs inputs in this area was estimated to originate from both petrogenic and pyrogenic origin. PAH levels showed a significant correlation with total butyltins, indicating that ship-building activity influenced PAH concentration and distribution. Vertical distribution of PAHs historically confirmed the correlation between shipbuilding activity and PAHs contamination.

  • PDF

Pollutants Behavior in Oxy-CFBC by Application of In-Furnace deSOx/deNOx Method (순산소 순환유동층에서 로내 탈황 및 탈질법 적용에 따른 오염물질 거동특성)

  • Choi, Gyung-Goo;Na, Geon-Soo;Shin, Ji-Hoon;Keel, Sang-In;Lee, Jung-Kyu;Heo, Pil-Woo;Yun, Jin-Han
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.212-220
    • /
    • 2018
  • Oxy-fuel combustion is considered as a promising greenhouse gas reduction technology in power plant. In this study, the behaviors of NO and $SO_2$ were investigated under the condition that in-furnace $deNO_x$ and $deSO_x$ methods are applied in oxy-fuel circulating fluidized bed combustion condition. In addition, the generation trends of $SO_3$, $NH_3$ and $N_2O$ were observed. For the purpose, limestone and urea solution were directly injected into the circulating fluidized bed combustor. The in-furnace $deSO_x$ method using limestone could reduce the $SO_2$ concentration in exhaust gas from ~403 to ~41 ppm. At the same experimental condition, the $SO_3$ concentration in exhaust gas was also reduced from ~3.9 to ~1.4 ppm. This trend is mainly due to the reduction of $SO_2$. The $SO_2$ is the main source of the formation of $SO_3$. The negative effect of $CaCO_3$ in limestone, however, was also appeared that it promotes the NO generation. The NO concentration in exhaust gas reduced to ~26 - 34 ppm by appling selective non-catalytic reduction method using urea solution. The $NH_3$ concentration in exhaust gas was appeared up to ~1.8 ppm during injection of urea solution. At the same time, the $N_2O$ generation also increased with increase of urea solution injection. It seems that the HNCO generated from pyrolysis of urea converted into $N_2O$ in combustion atmosphere. From the results in this study, the generation of other pollutants should be checked as the in-furnace $deNO_x$ and $deSO_x$ methods are applied.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.

Simultaneous Removal Characteristics of NOx, SOx from Combustion Gases using Pulse Corona induced Plasma Chemical Processing (PPCP에 의한 연소가스 중 NOx, SOx 동시제거 특성)

  • Park, Jae-Yoon;Koh, Yong-Sul;Jung, Jang-Gun;Kim, Jung-Dal
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.211-216
    • /
    • 2000
  • In this paper, experimental investigations were carried out to remove NOx, SOx simultaneously from a simulated combustion flue gas [$NO(0.02%)-SO_2(0.08%)-CO_2-Air-N_2$] by using a pulse corona induced plasma chemical processing. Discharge domain of wire-cylindrical plasma reactor was separated from a gas flow duct to avoid unstable discharge by aerosol particle deposited on discharge electrode and grounded electrode. The NOx, SOx removal was experimentally investigated by a reaction induced to ammonium nitrate, ammonium sulfate using a low price of aqueous NaOH solution and a small quantity of ammonia. Volume percentage of aqueous NaOH solution used was 20% and $N_2$ flow rate was $2.5{\ell}/min$ for bubbling aqueous NaOH solution. Ammonia gas(l4.82%) balanced by argon was diluted by air and was introduced to a main simulated flue gas duct through $NH_3$ injection system which was in downstream of reactor. The $NH_3$ molecular ratio(MR) was determined based on [$NH_3$] and [$NO+SO_2$]. MR is 1.5. The NOx removal rates increased in the order of DC, AC and pulse, but SOx removal rates was not significantly effected by source of electricity. The NOx removal rate slightly decreased with increasing initial concentration. but SOx removal rate was not significantly affected by initial concentration. The NOx, SOx removal rates decreased with increasing gas flow rate.

  • PDF

Research on Fire Safety of Mortar-Containing Waste Tire Powders and Flame Retardant (폐타이어 분말과 난연제가 혼입된 모르타르의 화재안전에 관한 연구)

  • Park, Jeong-Jin;Son, Ki-Sang
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.12-17
    • /
    • 2010
  • The purpose of this study is to determine how effectively waste tire recycled material mixed with flame retardant work in combating fire. As discovered in the previous study, waste tire mixed with cement mortar has more insulation capacity. However, this mortar is weak against fire. Therefore flame retardant, with a specific proportional mix, will be added to increase its fire prevention capacity. Tests will be made in accordance with ISO 5657 procedures for measuring fire ignition time, flame and shape variation of test pieces at the Building Material Test Institute. The test piece will be set up with horizontal levels having a constant radiation heat of $1{\sim}5W/cm^2$. Temperature transfers and increases from the surface into the interior. Combustible gases result due to pyrolysis, and regular contact is maintained between the fire source and the center of the test piece for assessment purposes. Ignition has not been occurred without adding retardant meaning that there is almost no possibility of ignition of waste tire particle. This fact can be considered as fire load to appreciate a volume of combustion materials. Flame is not occurred due to heat-absorbing effect by adding non-organic series retardant into waste tire particle. Conclusions have been summarized as follows; 1) Combustion of building material can be decreased by adding retardant to waste tire-mixing mortar. But compressive strength and insulation capacity of the material should be measured later. 2) Firing prevention and ignition are main points of building fire. Reasonable fire engineering assessment of interior material should be made for establishing effective disaster prevention system.

Effects of the Preparation Process on the Synthesis and the Luminescence of Ba2SiO4:Eu2+ Phosphor Powders (합성공정이 Ba2SiO4:Eu2+ 형광체 분말의 합성과 발광특성에 미치는 영향)

  • Park, Jung Hye;Kim, Young Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.184-189
    • /
    • 2013
  • $Ba_2SiO_4:Eu^{2+}$ ($B_2S:Eu^{2+}$) powders were prepared by firing the dry gel obtained by the sol-gel and the hybrid process (sol-gel and combustion), respectively, and their structure and luminescence were investigated. Tetraethyl orthosilicate (TEOS) was used as a Si source. The phase transition was observed with the TEOS content. With 1.2M TEOS, the powders prepared by the sol-gel process without prior calcination were composed of the $B_2S:Eu^{2+}$ single phase, whereas those by the sol-gel and the hybrid process with prior calcination consisted of the dominant $B_2S:Eu^{2+}$ and minor $BaSiO_3:Eu^{2+}$ ($BS:Eu^{2+}$) phases and their emission intensities were approximately two times higher than those without prior calcination. The hybrid process could reduce the process time innovatively compared to the sol-gel process, even though the former was a little inferior to the latter in the emission intensity of $B_2S:Eu^{2+}$. With 1.1M TEOS, the $B_2S:Eu^{2+}$ single phase was obtained by the hybrid process, and its green emission was observed at 505 nm originated from the $4f^65d^1{\rightarrow}4f^7$ transition of $Eu^{2+}$ ions.

A Mathematical Programming Method for Minimization of Carbon Debt of Bioenergy (바이오에너지의 탄소부채 최소화를 위한 수학적 계획법)

  • Choi, Soo Hyoung
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.269-274
    • /
    • 2021
  • Bioenergy is generally considered to be one of the options for pursuing carbon neutrality. However, for a period of time, combustion of harvested plant biomass inevitably causes more carbon dioxide in the atmosphere than combustion of fossil fuels. This paper proposes a method that predicts and minimizes the total amount and payback period of this carbon debt. As a case study, a carbon cycle impact assessment was performed for immediate switching of the currently used fossil fuels to biomass. This work points out a fundamental vulnerability in the concept of carbon neutrality. As an action plan for the sustainability of bioenergy, formulas for afforestation proportional to the decrease in the forest area and surplus harvest proportional to the increase in the forest mass are proposed. The results of optimization indicate that the carbon debt payback period is about 70 years, and the carbon dioxide in the atmosphere increases by more than 50% at a maximum and 3% at a steady state. These are theoretically predicted best results, which are expected to be worse in reality. Therefore, biomass is not truly carbon neutral, and it is inappropriate as an energy source alternative to fossil fuels. The method proposed in this work is expected to be able to contribute to the approach to carbon neutrality by minimizing present and future carbon debt of the bioenergy that is already in use.

Measurement of Sulfur Dioxide Concentration Using Wavelength Modulation Spectroscopy With Optical Multi-Absorption Signals at 7.6 µm Wavelength Region (7.6 µm 파장 영역의 다중 광 흡수 신호 파장 변조 분광법을 이용한 이산화황 농도 측정)

  • Song, Aran;Jeong, Nakwon;Bae, Sungwoo;Hwang, Jungho;Lee, Changyeop;Kim, Daehae
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2020
  • According to the World Health Organization (WHO), air pollution is a typical health hazard, resulting in about 7 million premature deaths each year. Sulfur dioxide (SO2) is one of the major air pollutants, and the combustion process with sulfur-containing fuels generates it. Measuring SO2 generation in large combustion environments in real time and optimizing reduction facilities based on measured values are necessary to reduce the compound's presence. This paper describes the concentration measurement for SO2, a particulate matter precursor, using a wavelength modulation spectroscopy (WMS) of tunable diode laser absorption spectroscopy (TDLAS). This study employed a quantum cascade laser operating at 7.6 ㎛ as a light source. It demonstrated concentration measurement possibility using 64 multi-absorption lines between 7623.7 and 7626.0 nm. The experiments were conducted in a multi-pass cell with a total path length of 28 and 76 m at 1 atm, 296 K. The SO2 concentration was tested in two types: high concentration (1000 to 5000 ppm) and low concentration (10 ppm or less). Additionally, the effect of H2O interference in the atmosphere on the measurement of SO2 was confirmed by N2 purging the laser's path. The detection limit for SO2 was 3 ppm, and results were compared with the electronic chemical sensor and nondispersive infrared (NDIR) sensor.