• Title/Summary/Keyword: Combustion engines

Search Result 758, Processing Time 0.031 seconds

A Study on the Effect of GND Condition on CISPR25 Radiation Emission Test (GND조건이 CISPR25 복사방출 시험에 미치는 영향에 관한 연구)

  • Yoon, Jin-sang;Hong, ik-pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.404-407
    • /
    • 2018
  • - A car is a means of transporting passengers or cargo on the ground by transmitting power from the engine to the wheels. In the past, automobiles started from internal combustion engines have recently been introduced with hybrid electric vehicles and pure electric vehicles. As a result, the deployment of high-tech electrical and electronic products is inevitably increased due to the development of technology and stability of various parts, resulting in a more complicated and diversified electromagnetic environment. CISPR 25 is conducting research on the test method for electromagnetic noise. In order to analyze the noise pattern according to the GND condition required in the radiation emission test, various conditions are applied for comparison. 2 Page - General characteristics of EMI chambers, techniques for testing and measuring equipmen 3 Page - RE test : Analysis of Noise due to Ground Strap Change when Sample is in Center, Analysis of Noise due to Ground Strap Changes when the Sample is not in the Center.

  • PDF

LFG Utilization in Hong Kong (Case study of the Shuen Wan and Urban Landfills)

  • Lloyd, Bryce;Chan, Louis;Nardelli, Ray;Sullivan, Kevin
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05b
    • /
    • pp.85-91
    • /
    • 2001
  • This paper provides a case study of landfill gas (LFG) utilization fer direct use as process fuel, and for electrical power generation at restored landfills in the Hong Kong Special Administrative Region of China (HKSAR). The paper specifically covers the LFG utilization schemes, which are required under landfill restoration contracts at the Shuen Wan and Urban Landfills. These contracts provide for the restoration and aftercare of six landfills, and are administered by the Environmental Protection Department (EPD) of the Hong Kong Government. The LFG utilization scheme at the Shuen Wan Landfill incorporates the direct use of LFG by compressing and dehumidifying the LFG prior to conveyance through a 1.6-kilometer (1-mile) pipeline. The pipeline provides an alternate fuel source to naphtha during process heating for gas production at the Tai Po Gas Production Plant of the Hong Kong and China Gas Limited (HKCC). The LFG utilization scheme at the Jordan Valley Landfill (one of the Urban Landfills) beneficially uses the LFG as fuel for electrical power generation with reciprocating internal combustion engines. The LFG is compressed, cooled, and filtered prior to delivery to two engine/generator sets. This system provides power to operate the leachate pre-treatment plant, which processes leachate from all of the Urban Landfill sites. The case study will examine the technical and non-technical considerations, including harriers, for developing, designing and implementing the LFG utilization projects in Hong Kong. Specific regulatory considerations and external governmental agency approvals are discussed, including the requirement to register as a gas-producing utility. While the paper focuses on LFG utilization applications in Hong Kong, many of the considerations discussed are also applicable to development of LFG utilization in other regions of Asia.

  • PDF

Rig Tester Development for the Performance Validation of a Piston Oil Cooling Gallery (피스톤 오일 냉각 유로의 성능 검증을 위한 리그 시험기 개발)

  • Chun, Sang-Myung;Lee, Jeong-Keun;Joo, Dae-Heon;Ryu, Kwan-Ho;Ha, Dae-Hong
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.387-398
    • /
    • 2009
  • The operation condition of recently designed pistons for high power and high speed diesel engine become more severe due to the increment of combustion pressure and temperature. So, in order to overcome high temperature, the application of the mono-metal cast aluminum alloy piston featuring an enclosed cast-in open cooling gallery has increased. In this research, it is developed a PCJ (piston cooling jet) rig tester, described the test procedure and validated the performance of sample piston cooling gallery design. Then the test rig will be used for developing the design technology of piston cooling gallery. The test rig is composed with oil reservoir and pumping system, oil jet system, piston fixing and moving system, collecting oil measuring system, and data measuring and recording system. It will be measured collecting efficiencies under conditions of a few piston positions, oil jet pressures and oil viscosities for a piston cooling gallery. Furthermore, the PCJ rig tester will be used for the optimum design of the oil cooling gallery which being applied to increase the cooling efficiency of pistons in diesel engines satisfying the EURO V emission regulation and the more.

Synthetic Strategies for High Performance Hydrocarbon Polymer Electrolyte Membranes (PEMs) for Fuel Cells (고성능 탄화수소계 고분자 전해질막의 합성 전략)

  • Lee, So Young;Kim, Hyoung-Juhn;Nam, Sang Yong;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • Fuel cells are regarded as a representative energy source expected to replace fossil fuels particularly used in internal combustion engines. One of the most important components is polymer electrolyte membranes (PEMs) acting as a proton conducting barrier to prevent fuel gas crossover. Since water channels act as proton pathways through PEMs, many researchers have been focused on the 'good phase-separation of hydrophilic moiety' which ensures high water retention under low humidity enough to keep the water channel for good proton conduction. Here, we summarized the strategies which have been adopted to synthesize sulfonated PEMs having high proton conductivities even under low humidified conditions, and hope this review will be helpful to design high performance hydrocarbon PEMs.

Performance Test of Metal 3D Printed Micro Gas Turbine Engine Combustor (초소형 가스터빈 엔진용 금속 3D 프린팅 연소기 성능 시험)

  • Kim, Jaiho;Kim, Hyungmo;Park, Poomin;Rhee, Dongho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.51-58
    • /
    • 2019
  • In this study, a set of performance tests on 3D-printed combustor components were carried out to investigate the performance of 3D-printed component and its feasibility for micro gas turbine engines. The test were conducted for four different equivalence ratios under two different engine operating conditions. The measurement results show that the tested combustor had a low total pressure loss coefficient and a uniform exit temperature distribution. However, the combustion efficiency values are less than 93.5% owing to the large amount of UHC and CO, which is considerably lower than a typical gas turbine engine combustor. The performance data obtained from the tests will be used for combustor performance improvements using 3D-printing technology.

Development of IMEP Estimation and Control Algorithm Using In-Cylinder Difference Pressure for Passenger Diesel Engines (승용 디젤 엔진의 실린더 차이 압력을 이용한 IMEP 추정 및 제어 알고리즘 개발)

  • Chung, Jae-Sung;Oh, Seung-Suk;Park, In-Seok;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.915-921
    • /
    • 2012
  • In this study, we propose a new method for estimating the IMEP using difference pressure, which is the pressure difference between the cylinder pressure and the motoring pressure. The estimated IMEP, denoted as $IMEP_{diff}$, optimizes the theoretical IMEP calculation range based on the fact that the difference pressure exists between the start and the end of combustion. $IMEP_{diff}$ is verified to have a high linear correlation with IMEP with $R^2$ of 0.9955. The proposed method can estimate the IMEP with 21% of the cylinder pressure data and 31% of the calculation effort compared to the theoretical IMEP calculation method, and therefore, it has great potential for real-time implementations. The estimation and control performance of $IMEP_{diff}$ is validated by engine experiments, and by controlling $IMEP_{diff}$, the torque variation between the cylinders was reduced.

Assessment of Performance of Motor System for City Bus (노선버스용 구동모터 시스템의 성능평가)

  • Lee, Yoon-Ki;Myong, Kwang-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.189-196
    • /
    • 2011
  • Recently, research and development of a hybrid system for passenger cars as well as for heavy-duty vehicles has become more intensive. An electric powertrain system using an electric motor can replace conventional gasoline and diesel engines. The electric motor has a higher efficiency, better acceleration performance, and is more comfortable than conventional powertrain systems; however, new methods for assessing power performance and energy convergence efficiency have to be investigated because the characteristics of an electric motor are entirely different from those of an internal combustion engine (ICE). In this study, an experiment was carried out on a motor (PMSM: Permanent Magnet Synchronous Motor) test bench. One simple driving mode and four other driving modes identified from real-world driving data of a city bus were selected to perform the experiment on the motor test bench. Then, methods for assessing the acceleration performance, energy convergence efficiency, regenerative effect, etc., were investigated. It was found that the energy efficiency of PMSM was about 90% and that 40% of demand energy was regenerated.

Performance and Emissions Characteristics of Agricultural Generator and Air Heater using DME Fuel (DME를 이용한 농업용 온풍기와 발전기의 성능 및 배출가스 특성 연구)

  • KIM, SHIN;MIN, KYOUNIL;PARK, CHEUNKYU;LEE, HYUNCHAN;NA, BYUNGKI
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.4
    • /
    • pp.431-440
    • /
    • 2016
  • Electric or hydrogen energy source is expected to solve a various issues including energy security and exhaust pollution. However, it is required a lot of time and a variety of development to apply for commercialization. Therefore, it is needed to translation fuels between the future and the present. DME (Dimethyl Ether) can play a reduce exhaust emission from medium- to heavy-duty engines that are mostly used in commercial sector. It have applied to the DME fuel as a various alternative fuel including power generation in many countries. Especially, it is necessary to secure the energy of energy-poor areas that are widely distributed around the world. And Korea also has the energy-poor areas due to geographical characteristics. These areas has been covered by their own energy through some small diesel generators, diesel boiler etc. If DME fuels are supplied in new demand such as rural sector with energy poor area, DME fuel will be available in the wider sector. In this study, it investigated performance and emission characteristics of agricultural generator and air heater using DME fuel. So the existing equipment of generator and air heater was modified to apply DME fuel. And combustion characteristics and properties of exhaust gas according to the contents of the DME fuel were evaluated. DME fuel showed a potential application in agricultural generator and air heater.

Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant (에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안)

  • Song, Minsu;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.

An Experimental Study on the Measurement of Flow Field in a Direct Diesel Engine Using a Single Cylinder Visualization Engine (가시화 엔진을 이용한 직분식 디젤엔진내의 유동장 측정에 관한 연구)

  • Han, Yong-Taek;Hwang, Kyu-Min;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.129-137
    • /
    • 2006
  • This paper studies the effects of the swirl for the variation of intake port configuration that is key parameters in the flow field of direct injection diesel engines. In-cylinder flow characteristics is known to have significant effects on air-fuel mixing, combustion, and emissions. To investigate the effects of the swirl flow, various rpm(250, 500, 750) and two different intake port were used. And to evaluate the swirl motion in the flow field visualization engine, steady state flow test was conducted. Helical port intake port and SCV(Swirl Control Valve) were selected as the design parameters to increase the swirl flow and parametric study was performed. In the case of non-SCV, intake flow rate and non-dimensional swirl ratio were higher than those of SCV for the swirl head type. So, we could strengthen the swirl in the flow field with the swirl head type and don't using SCV. From the results of steady state flow test, non-swirl head type has the most good advantage for intake flow rate, and also the flow rate could be increased by using the SCV slightly. The effects of the type of engine head on intake air flow capability are dominant with respect to the existence of the SCV. We could measure the qualitative grade of swirl by capturing the scattering signal of microballoon from ICCD camera in the visualization diesel engine.