• 제목/요약/키워드: Combustion engines

검색결과 753건 처리시간 0.022초

이중연소 램제트엔진의 성능해석 기법 (Performance Analysis Method for Dual Combustion Ramjet Engines)

  • 서봉균;염효원;성홍계;길현용;윤현걸
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.326-330
    • /
    • 2011
  • 이중연소 램제트엔진의 아음속 연소기의 연소가스와 스크램제트 모드로 흡입되는 흡입공기의 혼합 및 초음속 연소를 고려한 이중연소램제트 성능해석 기법을 개발하고 검증하였다. 극초음속 흡입구의 유동특성을 고려하기 위하여 Taylor-Maccoll 방정식을 사용하였으며 초음속 연소기 해석을 위해 준 1차원 연소모델 및 CEA를 이용한 화학 평형 모델을 적용하였다. 개발된 모델을 통하여 계산된 흡입구와 연소기에서의 열역학 데이터를 수치해석 결과와 비교하였다.

  • PDF

액체추진제 로켓 엔진 연소장치 개발에 있어서의 전산유체역학 응용 (Application of Computational Fluid Dynamics to Development of Combustion Devices for Liquid-Propellant Rocket Engines)

  • 조미옥;김성구;한상훈;최환석
    • 항공우주기술
    • /
    • 제13권2호
    • /
    • pp.150-159
    • /
    • 2014
  • 본 연구에서는 액체산소/케로신 추진 로켓 엔진 연소장치의 국내 개발에 있어서의 전산유체역학 응용 사례를 간략히 소개하였다. 추진제 공급부에 대한 다차원 유동 해석을 통해 유동 균일성을 확인하고 및 압력 손실을 예측할 수 있으며, 개념 설계 단계에서 추진제 매니폴드 형상 설계안을 비교/선택할 수 있다. 다분야 연소/냉각 성능 통합 해석을 통해 로켓 엔진 연소기의 연료 막냉각 및 열차폐 코팅 조건 등 연소/냉각 성능 관련 설계 문제 해결에 필요한 주요 정보를 도출할 수 있다. 향후 분사면 근처에서의 추진제 혼합 및 연소특성을 파악할 수 있는 해석 모델/기법을 개발할 필요가 있다.

연료조성에 따른 HCCI 엔진의 냉염 및 열염의 2단연소 특성에 관한 실험적 연구 (An Experimental Study on the Two Stage Ignition of Cool Flame and Hot Flame in HCCI Engine According to Fuel Composition)

  • 이기형;김형민;류재덕;이창식
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.17-24
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, it is well known that HCCI engines increased HC and CO. Thus, the investigation of combustion characteristics which consists cool and hot flames for HCCI engines were needed to obtain the optimal combustion condition. In this study, combustion characteristics for direct injection type HCCI engine such as quantity of cool flame and hot flame, ignition timing and ignition delay were investigated to clarify the effects of these parameters on performance. The results revealed that diesel combustion showed the two-stage ignition of cool flame and hot flame, the rate of cool flame increase and hot flame decrease with increasing intake air temperature. On the other hand, the gasoline combustion is the single-stage ignition and ignition timing is near the TDC. In addition mixed fuel combustion showed different phenomenon, which depends on the ratio of gasoline component. Ignition timing of mixed fuel is retarded near the TDC and the ignition delay is increased according to ratio of gasoline.

중속 디젤엔진의 실린더 헤드포트 유동 특성 실험 연구 (An Experimental Study of the Flow Characteristics of Cylinder Head Port for Medium-Speed Diesel Engines)

  • 김진원;갈상학
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.790-795
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly affected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. This paper presents the results of an experimental investigation of steady flow through the various kinds of commercial cylinder head ports, and the development procedures of HHI's H21/32 prototype cylinder head ports.

  • PDF

환상 2단연소실을 갖는 직접분사식 디젤기관의 성능 및 배출물 특성에 관한 실험적 연구 (An Experimental Research on Performance and Emission Characteristics of Direct-Injection Diesel Engines with Annular Two-stage Combustion Chamber)

  • 김동호;배종욱
    • 동력기계공학회지
    • /
    • 제7권4호
    • /
    • pp.12-18
    • /
    • 2003
  • Various measures have been tried to reduce the NOx emission from diesel engine, but with partial success because the mechanisms of NOx and PM formations appear to have trade-off relation between each other. Therefore it has been known to be difficult to reduce NOx emission and PM emission simultaneously. Two stage combustion method i,e. a combustion process which has rich combustion stage and lean combustion stage one by one, has been developed successfully to reduce NOx formation in the continuous combustion chambers such as in the boilers. But until yet it is not successful to apply the same method in intermittent combustion chamber like in the diesel engine cylinder, as it was, only several research works were carried out. In this study, devised was a uniquely shaped combustion chamber with reformed piston crown intended to keep fuel-rich condition during early stage of combustion and fuel-lean condition during next stage. It was found that the NOx emission decreased significantly at various conditions of operation with the two stage combustion type engines of PR20 type, but other values such as smoke, CO and specific fuel consumption deteriorated as usual.

  • PDF

Scramjet Research at JAXA, Japan

  • Chinzei Nobuo
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.1-1
    • /
    • 2005
  • Japan Aerospace Exploration Agency(JAXA) has been conducting research and development of the Scramjet engines and their derivative combined cycle engines as hypersonic propulsion system for space access. Its history will be introduced first, and its recent advances, focusing on the engine performance progress, will follow. Finally, future plans for a flight test of scramjet and ground test of combined cycle engine will be introduced. Two types of test facilities for testing those hypersonic engines. namely, the 'Ramjet Engine Test Facility (RJTF)' and the 'High Enthalpy Shock Tunnel (HIEST)' were designed and fabricated during 1988 through 1996. These facilities can test engines under simulated flight Mach numbers up to 8 for the former, whereas beyond 8 for the latter, respectively. Several types of hydrogen-fueled scramjet engines have been designed, fabricated and tested under flight conditions of Mach 4, 6 and 8 in the RJTF since 1996. Initial test results showed that the thrust was insufficient because of occurrence of flow separation caused by combustion in the engines. These difficulty was later eliminated by boundary-layer bleeding and staged fuel injection. Their results were compared with theory to quantify achieved engine performances. The performances with regards to combustion, net thrust are discussed. We have reached the stage where positive net thrust can be attained for all the test coditions. Results of these engine tests will be discussed. We are also intensively attempting the improvement of thrust performance at high speed condition of Mach 8 to 15 in High Enthalpy Shock Tunnel (HIEST). Critical issues for this purposemay be air/fuel mixing enhancement, and temperature control of combustion gas to avoid thermal dissociation. To overcome these issues we developed the Hypermixier engine which applies stream-wise vortices for mixing enhancement, and the M12-engines which optimizes combustor entrance temperature. Moreover, we are going to conduct the flight experiment of the Hypermixer engine by utilizing flight test infrastructure (HyShot) provided by the University of Queensland in fall of 2005 for comparison with the HIEST result. The plan of the flight experiment is also presented.

  • PDF

BMW N53 직접분사식 가솔린 엔진의 초희박 연소특성에 관한 연구 (A Study on the Ultra Lean Combustion Characteristics of the BMW N53 GDI Engine)

  • 김홍석;오진우;김성대;박철웅;이석환;정용일
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.82-89
    • /
    • 2011
  • Ultra lean combustion with stratified air-fuel mixture is one of the methods that can improve fuel economy of gasoline engines. The aim of this study is to show that how much fuel economy is improved and what are differences in engine control of the ultra lean combustion compared with stoichiometric combustion. In this study, the BMW N53 GDI engine, which is one of ultra lean combustion GDI engines introduced in the market recently, was tested at various engine operating conditions. Results indicated that fuel consumption rates were improved by 11.9~25.8% by the ultra lean combustion compared with stoichiometric combustion. It was also found that multiple fuel injection, multiple spark, early intake valve opening, and large vlave overlap duration were the features of the ultra lean combustion for combustion stability and emission improvement.

중질 잔사유의 연소성 분석과 보조 분사에 의한 연소성 향상에 관한 검토 (Examination on Combustion Quality Analysis of Residue Heavy Fuel Oil and Improvement of Combustion Quality Using Pre-injection)

  • 유동훈
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.113-119
    • /
    • 2014
  • Due to the development of the petroleum refining technology and continuously increased demand from markets, a quantity of gasoline and diesel oil produced from a restricted quantity of crude oil has been increasing, and residual fuel to be used at marine diesel engines has been gradually becoming low quality. As a result, it was recently reported that trouble oils which cause abnormal combustion such as knocking with extreme noise and misfire from internal combustion engines were increasing throughout the world. In this study, an author investigated ignitability and combustion quality by using combustion analyzer with constant volume(FCA, Fuel Combustion Analyzer) and middle speed diesel engine about MDO(Marine Diesel Oil), HFO(Heavy Fuel Oil), LCO(Light Cycle Oil) and Blend-HFO which was blended LCO of 1000 liters with HFO of 600 liters. Moreover, for betterment of ignitability and combustion quality of injected fuels, multi-injection experiment was carried out in the diesel engine using Blend-HFO. According to the results of FCA analysis, ignitability and combustion quality was bad in the order of MDO

신개념 로터리 엔진의 개발 (I) - 개념과 이론적 성능 분석 - (Development of A New Concept Rotary Engine (I) - Concept and theoretical performance analysis -)

  • 오문근;이규승;박원엽
    • Journal of Biosystems Engineering
    • /
    • 제28권1호
    • /
    • pp.27-34
    • /
    • 2003
  • Present combustion engines have reached almost at the limit of development due to the fundamental structural problems. This study was carried out to propose a new concept internal combustion engine which has great potential advantages to the conventional engines. Proposed new concept engine is a kind of rotary engine. A rotor is rotating concentrically in a cylinder which is divided into two partitioning valves. and it makes four compartments in the cylinder. The volumes of each of four compartments are changing continuously with the rotor movement, and performs the functions of intake, compression. expansion and exhaust simultaneously. The results of this study can be summarized as follows. 1. Expected theoretical thermal efficiency is 44.9 percent at the condition of 1000rpm and compression ratio of 8.0. which is almost the same as that of the conventional engines. i.e., piston and Wankel rotary engine. 2. The new concept engine has 2. working strokes in every revolution. Therefore. the new concept engine can reduce the specific weight and volume than four-stroke piston engine. 3. The torque variation is very small. therefore minimal noise and vibration are expectable. 4. The new concept engine can reduce mechanical energy loss than piston engine because neither crank mechanism nor eccentrical motion exists.