Application of Computational Fluid Dynamics to Development of Combustion Devices for Liquid-Propellant Rocket Engines

액체추진제 로켓 엔진 연소장치 개발에 있어서의 전산유체역학 응용

  • Received : 2014.09.05
  • Accepted : 2014.11.01
  • Published : 2014.11.01

Abstract

This study provides a brief introduction to application of the computational fluid dynamics to domestic development of combustion devices for liquid-propellant rocket engines. Multi-dimensional flow analysis can provide information on the flow uniformity and pressure loss inside the propellent manifold, from which the design selection can be performed during the conceptual design phase. Multi-disciplinary performance analysis of the thurst chamber can also provide key information on performance-related design issues such as fuel film cooling and thermal barrier coating conditions. Further efforts should be made to develop numerical models to resolve the mixing and combustion characteristics of LOX/kerosene near the injection face plate.

본 연구에서는 액체산소/케로신 추진 로켓 엔진 연소장치의 국내 개발에 있어서의 전산유체역학 응용 사례를 간략히 소개하였다. 추진제 공급부에 대한 다차원 유동 해석을 통해 유동 균일성을 확인하고 및 압력 손실을 예측할 수 있으며, 개념 설계 단계에서 추진제 매니폴드 형상 설계안을 비교/선택할 수 있다. 다분야 연소/냉각 성능 통합 해석을 통해 로켓 엔진 연소기의 연료 막냉각 및 열차폐 코팅 조건 등 연소/냉각 성능 관련 설계 문제 해결에 필요한 주요 정보를 도출할 수 있다. 향후 분사면 근처에서의 추진제 혼합 및 연소특성을 파악할 수 있는 해석 모델/기법을 개발할 필요가 있다.

Keywords

References

  1. G. P. Sutton, History of Liquid Propellant Rocket Engines, American Institute of Aeronautics and Astronautics, Inc., USA, 2006.
  2. S. J. Isakowitz, J. B. Hopkins, J. P. Hopkins Jr., International Reference Guidance to Space Launch Systems, 4th ed., American Institute of Aeronautics and Astronautics, Inc., USA, 2004.
  3. G. P. Sutton and O. Biblarz, Rocket Propulsion Elements(Eighth Edition), John Wiley & Sons, Inc., USA, 2010.
  4. Y.-D. Kang and B. Sun, "Numerical Simulation of Liquid Rocket Engine Thrust Chamber Regenerative Cooling," Journal of Thermophysics and Heat Transfer, Vol. 25-1, pp. 155-164, 2011. https://doi.org/10.2514/1.47701
  5. D. Preclik, O. Knab, J. Gorgen, and G. Hagemann, Simulation and Analysis of Thrust Chamber Flowfields: Cryogenic Propellant Rockets, in Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, and Design(ed.), American Institute of Aeronautics and Astronautics, Inc., USA, 2004.
  6. S.-K. Kim, H.-S. Choi, and Y. Kim, "Thermodynamic Modeling based on a Generalized Cubic Equation of State for Kerosene/LOx Rocket Combustion," Combustion and Flame, Vol. 159-3, pp. 1351-1365, 2012. https://doi.org/10.1016/j.combustflame.2011.10.008
  7. S.-K. Kim, M. Joh, H. S. Choi, and T. S. Park, "Multidisciplinary Simulation of a Regeneratively Cooled Thrust Chamber of Liquid Rocket Engine: Turbulent Combustion and Nozzle Flow," International Journal of Heat and Mass Transfer, Vol. 70, pp. 1066-1077, 2014. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.046
  8. W. Yang and B. Sun, "Numerical Simulation of Liquid Film in a Liquid Oxygen/Rocket Propellant 1 Liquid Rocket," Journal of Thermophysics and Heat Transfer, Vol. 26-2, pp. 328-336, 2012. https://doi.org/10.2514/1.T3759
  9. 조미옥, 한상훈, 김성구, 최환석, "OpenFOAM을 이용한 액체 로켓 연소기의 산화제 매니폴드 내 유동 해석," 한국항공우주학회지, 제40권 제9호, pp. 781-788, 2012.
  10. D. K. Huzel and D. H. Huang, Modern Engineering for Design of Liquid-Propellant Rocket Engines, Vol. 147, Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics, Inc., USA, 1992.
  11. 최환석, 한영민, 김영목, 조광래, "추력 30톤급 액체산소/케로신 로켓엔진 연소장치 개발(I)-연소기," 한국항공우주학회지, 제37권 제10호, pp. 1027-1037, 2009.
  12. 최환석, 서성현, 김영목, 조광래, "추력 30톤급 액체산소/케로신 로켓엔진 연소장치 개발(II)-가스발생기," 한국항공우주학회지, 제37권 제10호, pp. 1038-1047, 2009.
  13. 한상훈, 조미옥, 김성구, 최환석, "액체로켓엔진 연소기의 연료 분기구조 설계 및 해석," 한국추진공학회 2014년도 춘계학술대회, 2014.
  14. 김성구, 한영민, 최환석, "복합열전달 해석을 이용한 배플 분사기 설계 개선," 한국항공우주학회지, 제38권, 제4호, pp. 395-402, 2010.
  15. OpenFOAM Foundation, OpenFOAM User Guide, Version 2.1.0., 2011.
  16. S.-K. Kim, M. Joh, H. S. Choi, and T. S. Park, "Effective Modeling of Conjugate Heat Transfer and Hydraulics for the Regenerative Cooling Design of Kerosene Rocket Engines," Numerical Heat Transfer, Part A, Vol. 66, pp. 863-883, 2014. https://doi.org/10.1080/10407782.2014.892396
  17. 조미옥, 김성구, 최환석, "3-화학종 대체 혼합물을 이용한 케로신의 열역학적.전달 상태량 예측," 한국항공우주학회지, 제41권, 제11호, pp. 874-882, 2013.
  18. T. S. Park, H. J. Sung, and K. Suzuki, "Development of a Nonlinear Near-Wall Turbulence Model for Turbulent Flow and Heat Transfer," International Journal of Heat and Fluid Flow, Vol. 24, pp. 29-40, 2003. https://doi.org/10.1016/S0142-727X(02)00211-4
  19. 조미옥, 김성구, 최환석, "고팽창비 액체로켓 추력실의 연소.냉각 성능 통합 해석," 한국추진공학회 2012년도 추계학술대회, 2012.
  20. 조미옥, 김성구, 최환석, "연료 막냉각을 적용한 액체로켓 연소기의 연소/냉각 성능 간 Trade-off 해석," 한국추진공학회지, Vol. 16, No. 6, pp. 16-22, 2012.
  21. 조미옥, 김성구, 최환석, "액체로켓 엔진 연소기의 열차폐 코팅 및 막냉각 조건에 따른 냉각 성능 변화 해석," 한국추진공학회지, Vol. 18, No. 2, pp. 52-59, 2014.