• Title/Summary/Keyword: Combustion Dynamics

Search Result 311, Processing Time 0.025 seconds

Effects of Operating Conditions on NOx Emission in OFA-type Boiler (OFA형 보일러의 운전조건이 NOx 발생에 미치는 영향)

  • Park, Kyoungwoo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.253-259
    • /
    • 2013
  • In the present study, the characteristics of combustion phenomena and NOx emission in the OFA-type tangentially injected coal-fired boiler have been investigated numerically in order to find the effect of geometrical variation on the performance of the boiler. For these, numerical analyses of turbulent flow, chemical reaction, and radiation heat transfer are performed by using the computational fluid dynamics method. The predicted results clearly show that NOx formation highly depends on the combustion processes, the temperature and species concentrations. In addition, the optimum conditions for both the maximum NOx reduction and highest boiler efficiency can be obtained by considering the amount of supplied air and the injection angle at OFA, and modifying the boiler configuration. It is also found that the variation of supplied air at OFA is more effective than that of the injection angle for reducing the NOx emission, within the present operating conditions.

Study on Phase-Amplitude Characteristics in a Simplex Swirl Injector with Low Frequency Range (저주파 압력섭동 범위 내에서의 단일 스월 인젝터의 진폭-위상 특성 연구)

  • Khil, Tae-Ock;Chung, Yun-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.19-28
    • /
    • 2010
  • Generally, combustion instability is generated by the mutual coupling between the heat release and the acoustic pressure in the combustor. On the occasion, the acoustic pressure generates the oscillation of the mass flow rate of propellant injected from injector, and this oscillation again affects combustion in the combustor. So, the dynamic characteristics of the injector have been studied to control combustion instability using injector itself in Russia from 1970's. In order to study injector dynamics, a mechanical pulsator for forced pressure pulsation is produced and the method to quantify the mass flow rate of the propellant that is oscillating at the exit of the injector is developed. With the pulsator and the method, pulsating values of the mass flow rate, pressure, liquid film thickness, and axial velocity generated at the exit of the simplex swirl injector are measured in real time. And phase-amplitude characteristics of each parameter are analyzed using these pulsating values acquired at the exit of the simplex swirl injector.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

Effects of Char Produced from Burning Wood Combustibles on Thermal Pyrolysis (목재 가연물의 연소 시 생성되는 탄화가 열분해에 미치는 영향)

  • Hong, Ter-Ki;Ryu, Myung-Ho;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.7-12
    • /
    • 2019
  • To investigate the influence of the char layer formed during the combustion process on the pyrolysis of wood combustibles, ISO 5660-1 cone calorimetry experiments and Fire dynamics simulator (FDS) simulations were performed, and the results from these two methods were compared. The wood combustible selected as the fuel for this study, Douglas fir, has been widely used for the production of building materials, furniture, etc. The heat release rate (HRR) measured from the cone calorimetry experiment was in good agreement with the result predicted by the FDS simulation. However, the FDS simulation failed to predict the heat released by the smoldering combustion process, due to the absence of the char surface reaction in the model. The FDS simulation results clearly indicate that the char layer formed on the surface of combustibles produces a thermal barrier which prevents heat transfer to the interior, thickening the thermal depth and thus reducing the pyrolysis rate of combustibles.

Combustion Characteristics of Coal-Fired Boiler Depending on the Variations in Combustion Air Supply Method (미분탄 보일러의 연소용 공기공급 변화에 따른 노내 연소상태 해석)

  • Seo, San-Il;Park, Ho-Young;Kang, Dong-Soo;Jeong, Dong-Hae
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.156-162
    • /
    • 2010
  • 3-D CFD(Computational Fluid Dynamics) work were carried out to investigate the combustion characteristics in a boiler depending on the variations in air supply condition. For the gas temperature, $O_2$, NO, SOx at the outlet of economizer, the predicted values were been compared with the measured data. With the verified CFD model, the effects of air flow rates through SOFA(Separated Over Fire Air) and CCOFA(Closed Coupled Over Fire Air) on the combustion behavior in a boiler were simulated, and the distributions of NOx and gas temperature were mainly compared each other. The change in SOFA air flow rate gave the more sensitive effect on NOx than that in CCOFA. The distributions of gas temperature at convection path are differed with the changes in SOFA and CCOFA flow rate, so the combustion modification such as yaw anlge adjustment are required to get an enhanced gas temperature distribution.

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors (다종의 동축 스월형 단일 분사기 연소 특성에 관한 실험적 연구)

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.85-94
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principal design parameters. a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.

The Nonlinear Combustion Instability Prediction of Solid Rocket Motors (고체로켓모터의 비선형 연소 불안정성 예측 기법)

  • Hong, Ji-Seok;Moon, Hee-Jang;Sung, Hong-Gye;Um, Won-Seok;Seo, Seonghyeon;Lee, Do-hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2016
  • The prediction of combustion instability is important to avoid an obvious threat to the structural safety and the motor performance because it affects the apparent response function of the propellant, the burning rate, and a mean flow Mach number at the local surface. The combustion instability occurs in case acoustic waves were coupled with the combustion/flow dynamic frequency. In this paper, an acoustic instability model is derived from the nonlinear wave equation for analysing acoustic dynamics in solid rocket motors. The chamber pressure and burning rate effects on combustion instability have been investigated.

A Numerical Calculation for the Optimum Operation of Cyclone-based Combustion System (선회류 방식 연소시스템의 최적 조업을 위한 수치해석)

  • Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Kim, Ji-Won;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1005-1012
    • /
    • 2011
  • This research carried out a 3-dimensional simulation using computerized fluid dynamics (CFD) for the flow characteristics, temperature distribution, velocity distribution and residence time, etc. in a reactor in order to derive the optimal combustion conditions of an innovative combustion system. The area-weighted average temperature of the outlet of a furnace during combustion at a condition of fuel input rate 1.5 ton/hr, residence time 1.25 sec and air/fuel ratio 2.1 was $1,077^{\circ}C$, which is a suitable temperature for energy recovery and treatment of air pollutants. Exhaust gas is discharged through a duct at a 40~50 m/s maximum speed along strong vortexes at the center of a combustion chamber, so strong turbulence is created at the center of a combustion chamber to enhance the combustion speed and combustion efficiency. In this system, the optimum operation conditions to prevent incomplete combustion and suppress the formation of thermal NOx were air/fuel ratio 1.9~2.1 and fuel input rate 1.25~1.5 ton/hr.

Discussion on the Practical Use of CFD for Furnaces;A Case of Grate Type Waste Incinerators (연소로 열유동 해석 방식과 결과 분석에 대한 고찰;화격자식 소각로의 사례)

  • Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.85-94
    • /
    • 2002
  • Computational flow dynamics(CFD) has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Though it needs many simplifications and complicated flow models, the reasonability of its results is not fully evaluated. For example, the inlet condition is calculated from an arbitrarily assumed properties of combustion gas release from the waste bed, since the combustion in the bed is difficult to be predicted. In this study, the computational modeling and calculation procedures of CFD for the grate type waste incinerator were evaluated using comparative simulations. Though the assumption method on the generation of the combustion gas directly affected the temperature and gas species concentrations, the overall flow pattern was dominated by the secondary air jets. The gaseous reaction could be included by assuming the release of the products of incomplete combusion from the bed. However, the reaction effficiency cannot not be directly evaluated from the species concentration, since it is not possible to simulate the actual co-existence of fuel rich or oxygen rich puffs over the bed. In predicting the turbulence, the higher order model, such as Reynolds stress model, gave difference shape of local recirculation zones, but similar results was acquired from the standard $k-{\varepsilon}$ model. Introducing radiation model was required for accurate temperature prediction, but it also caused heat imbalance due to the fixed temperature of the inlet, i.e. the waste bed. Thus, the computational modeling procedures on incinerators and the analysis of the predicted results should be progressed carefully. Though not validated experimentally, current simulation method is capable of comparative evaluation on the flow-related parameters such as the furnace shape and secondary air injection using identical inlet conditions. Quantitative analysis using measures of the residence time and mixing is essential to compare the flow performance efficiently.

  • PDF

Numerical Analysis of Steam-methane Reforming Reaction for Hydrogen Generation using Catalytic Combustion (촉매 연소를 열원으로 한 수증기-메탄개질반응 전산유체해석)

  • Lee, Jeongseop;Lee, Kanghoon;Yu, Sangseok;Ahn, Kookyoung;Kang, Sanggyu
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • A steam reformer is a chemical reactor to produce high purity hydrogen from fossil fuel. In the steam reformer, since endothermic steam reforming is heated by exothermic combustion of fossil fuel, the heat transfer between two reaction zones dominates conversion of fossil fuel to hydrogen. Steam Reforming is complex chemical reaction, mass and heat transfer due to the exothermic methane/air combustion reaction and the endothermic steam reforming reaction. Typically, a steam reformer employs burner to supply appropriate heat for endothermic steam reforming reaction which reduces system efficiency. In this study, the heat of steam reforming reaction is provided by anode-off gas combustion of stationary fuel cell. This paper presents a optimization of heat transfer effect and average temperature of cross-section using two-dimensional models of a coaxial cylindrical reactor, and analysis three-dimensional models of a coaxial cylindrical steam reformer with chemical reaction. Numerical analysis needs to dominant chemical reaction that are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming(DSR) reaction. The major parameters of analysis are temperature, fuel conversion and heat flux in the coaxial reactor.