• Title/Summary/Keyword: Combined matrix

Search Result 446, Processing Time 0.035 seconds

MODULATION OF IRRADIATION-INDUCED CELL DEATH BY INSULIN-LIKE GROWTH FACTOR-II IN MC3T3 OSTEOBLASTS (Insulin-like growth factor-II가 방사선에 의한 MC3T3 조골세포의 세포사멸에 미치는 영향)

  • Park, Kyeong-Lok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.6
    • /
    • pp.617-624
    • /
    • 2007
  • Insulin-like growth factor(IGF) is the most abundant growth factor in bone matrix. Recent studies have shown that it can sensitize apoptotic cell death of osteoblasts. Thus, this study investigated whether IGF-II aggravates irradiation-induced cell death of osteoblasts. Cultured MC3T3 osteoblasts were irradiated and IGF-II was added at the concentration of 50 ng/ml immediately after the irradiation. Cell viability was measured by MTT assay. Changes in cell death and cell cycle were analyzed by flow cytometry. The expression of proapoptotic gene bax and antiapoptotic gene bcl-2 was quantified by real time RT-PCR and Western blot. A dose of 30 Gy caused G2/M arrest and increased cell death through both necrosis and apoptosis, while irradiation from 4 to 10 Gy little affected cell cycle and death. IGF-II treatment reduced cell viability without stimulating cell proliferation and changing cell cycle. Combined treatment of IGF-II with irradiation decreased cell viability and proliferation and increased cell death along with G2/M arrest. These effects were not different from those of irradiation only. At transcriptional and protein levels, IGF-II treatment did not affect bax and bcl-2 expression, whereas irradiation increased the expression ofbax without changes in bcl-2. IGF-II in combination with irradiation showed similar findings. These results suggest that IGF-II could modulate apoptotic cell death through mechanisms other than an imbalance between bax and bcl-2 gene expression, although its effect was overridden by irradiation.

A Study on Equivalent Modal Damping Values of Soil-Structure Coupling Models (지반-구조물 연계모델의 등가감쇠값에 관한 연구)

  • Park, Hyung Ghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.241-248
    • /
    • 1987
  • The theoretical backgrounds of the several methods were surveyed and reviewed to fin out the adequate one to determine equivalent modal damping values in solving the dynamic problem of soil-structure interaction by mode superposition method. Furthermore the rigorous damping matrix of equation of motion was obtained through component mode synthesis technique and used in direct integration of the equation. The analytical results by direct integration method were compared with those of mode superposition approach using the various sets of equivalent modal damping values calculated by the methods to be reviewed. Two types of superstructures and four kinds of subsurface conditions were considered and combined to make soil-structure coupled models. It was realized that dissipating energy method gives the equivalent modal damping values which lead the most similar results to direct integration ones. In case of fixed base, the responses of all methods except stiffness weighted approach are almost equal to those of direct integration method.

  • PDF

Grouting compactness monitoring of concrete-filled steel tube arch bridge model using piezoceramic-based transducers

  • Feng, Qian;Kong, Qingzhao;Tan, Jie;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.175-180
    • /
    • 2017
  • The load-carrying capacity and structural behavior of concrete-filled steel tube (CFST) structures is highly influenced by the grouting compactness in the steel tube. Due to the invisibility of the grout in the steel tube, monitoring of the grouting progress in such a structure is still a challenge. This paper develops an active sensing approach with combined piezoceramic-based smart aggregates (SA) and piezoceramic patches to monitor the grouting compactness of CFST bridge structure. A small-scale steel specimen was designed and fabricated to simulate CFST bridge structure in this research. Before casting, four SAs and two piezoceramic patches were installed in the pre-determined locations of the specimen. In the active sensing approach, selected SAs were utilized as actuators to generate designed stress waves, which were detected by other SAs or piezoceramic patch sensors. Since concrete functions as a wave conduit, the stress wave response can be only detected when the wave path between the actuator and the sensor is filled with concrete. For the sake of monitoring the grouting progress, the steel tube specimen was grouted in four stages, and each stage held three days for cement drying. Experimental results show that the received sensor signals in time domain clearly indicate the change of the signal amplitude before and after the wave path is filled with concrete. Further, a wavelet packet-based energy index matrix (WPEIM) was developed to compute signal energy of the received signals. The computed signal energies of the sensors shown in the WPEIM demonstrate the feasibility of the proposed method in the monitoring of the grouting progress.

An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA

  • Khatir, S.;Khatir, T.;Boutchicha, D.;Le Thanh, C.;Tran-Ngoc, H.;Bui, T.Q.;Capozucca, R.;Abdel-Wahab, M.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • The existence of damages in structures causes changes in the physical properties by reducing the modal parameters. In this paper, we develop a two-stages approach based on normalized Modal Strain Energy Damage Indicator (nMSEDI) for quick applications to predict the location of damage. A two-dimensional IsoGeometric Analysis (2D-IGA), Machine Learning Algorithm (MLA) and optimization techniques are combined to create a new tool. In the first stage, we introduce a modified damage identification technique based on frequencies using nMSEDI to locate the potential of damaged elements. In the second stage, after eliminating the healthy elements, the damage index values from nMSEDI are considered as input in the damage quantification algorithm. The hybrid of Teaching-Learning-Based Optimization (TLBO) with Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) are used along with nMSEDI. The objective of TLBO is to estimate the parameters of PSO-ANN to find a good training based on actual damage and estimated damage. The IGA model is updated using experimental results based on stiffness and mass matrix using the difference between calculated and measured frequencies as objective function. The feasibility and efficiency of nMSEDI-PSO-ANN after finding the best parameters by TLBO are demonstrated through the comparison with nMSEDI-IGA for different scenarios. The result of the analyses indicates that the proposed approach can be used to determine correctly the severity of damage in beam structures.

Effects of Valproic Acid on Proliferation, Apoptosis, Angiogenesis and Metastasis of Ovarian Cancer in Vitro and in Vivo

  • Shan, Zhao;Feng-Nian, Rong;Jie, Geng;Ting, Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3977-3982
    • /
    • 2012
  • Inhibitors of histone deacetylase activity are emerging as a potentially important new class of anticancer agents. In this study, we assessed the anticancer effects of valproic acid (VPA) on ovarian cancer in vitro and in vivo. Cultured SKOV3 cells were treated by VPA with different concentrations and time, then the effects on cell growth, cell cycle, apoptosis, and related events were investigated. A human ovarian cancer model transplanted subcutaneously in nude mice was established, and the efficacy of VPA used alone and in combination with diammine dichloroplatinum (DDP) to inhibit the growth of tumors was also assessed. Proliferation of SKOV3 cells was inhibited by VPA in a dose and time dependent fashion. The cell cycle distribution changed one treatment with VPA, with decrease in the number of S-phase cells and increase in G1-phase. VPA could significantly inhibit the growth of the epithelial ovarian cancer SKOV3 cells in vivo without toxic side effects. Treatment with VPA combined with DDP demonstrated enhanced anticancer effects. The result of flow cytometry (FCM) indicated that after VPA in vitro and in vivo, the expression of E-cadherin was increased whereas vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) were decreased. This study suggests that VPA could be a novel attractive agent for treatment of ovarian cancer.

Biomarkers Screening Between Preoperative and Postoperative Patients in Pancreatic Cancer

  • Li, Pei;Yang, Juan;Ma, Qing-Yong;Wu, Zheng;Huang, Chen;Li, Xu-Qi;Wang, Zheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4161-4165
    • /
    • 2013
  • Objective: To investigate discriminating protein patterns and potential biomarkers in serum samples between pre/postoperative pancreatic cancer patients and healthy controls. Methods: 23 serum samples from PC patients (12 preoperative and 11 postoperative) and 76 from healthy controls were analyzed using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) technique combined with magnetic beads-based weak cation-exchange chromatography (MB-WCX). ClinProTools software selected several markers that made a distinction between pancreatic cancer patients and healthy controls. Results: 49 m/z distinctive peaks were found among the three groups, of which 33 significant peaks with a P < 0.001 were detected. Two proteins could distinguish the preoperative pancreatic cancer patients from the healthy controls. About 15 proteins may be potential biomarkers in assessment of pancreatic cancer resection. Conclusion: MB-MALDI-TOF-MS method could generate serum peptidome profiles of pancreatic cancer and provide a new approach to identify potential biomarkers for diagnosis and prognosis of this malignancy.

Design and Development of Thermoacoustic Rdfrierator : I. Acoustic Analysis of Resonator and Prediction of Energy Conversion (열음향 냉동기의 설계 및 개발 : I. 내부공간의 음향해석 및 에너지 변환 예측)

  • Park, Chul-Min;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.44-52
    • /
    • 1996
  • Acoustical characteristics of internal pipe structures and a loudspeaker of the thermoacoustic refrigerator are analyzed by using the transfer matrix method. The resonator system is dismantled into verious basic acoustic elements, and then linearized transfer matrices are serially combined with the dynamical system of linearized loudspeaker model, that the total system of thermoacoustic refrigerator can be analyzed in terms of frequency characteristics and acoustic field shape. Additionally, by using equations for energy flow through the capillary stack, the temperature distribution over the stack is numerically estimated. After expressing the acoustic work flow, thermoacoustic flow, and energy loss per unit length in a single capillary duct by using the transverse functional variations, overall energy flow rate and energy balance are obtained for the whole capillary stack. The final expression for energy flow through the stack is numerically evaluated by varying physical parameters obtained from the sound field analysis. After confirming good agreements between predicted and experimental results for the interior sound field of a refrigerator model, the thermoacoustic characteristics of Hofler's apparatus is analyzed by the proposed method and it is observed that the results agree well with Hofler's experimental results.

  • PDF

Resistance of Cucumber Grafting Rootstock Pumpkin Cultivars to Chilling and Salinity Stresses

  • Xu, Yang;Guo, Shi-rong;Li, He;Sun, Hong-zhu;Lu, Na;Shu, Sheng;Sun, Jin
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.220-231
    • /
    • 2017
  • Grafting using a pumpkin (Cucurbita sp.) rootstock is an effective way to improve cucumber (Cucumis sativus) resistance to a combination of chilling and salinity stresses. We evaluated the tolerance of 15 pumpkin cultivars to chilling, salinity, and combined stresses at the germination and seedling stages. Selected plant characteristics, including germination rate, germination potential, germination index, plant height, stem thickness, fresh weight, and dry weight, were analyzed. We used the unweighted pair group method with arithmetic mean for cluster analyses to determine the stress tolerance levels of the pumpkin cultivars. The 15 cultivars were divided into three clusters: tolerant, moderately tolerant, and susceptible to stress treatments. The stress tolerances of all cultivars were variable in the germination and seedling stages, and most cultivars were not tolerant to individual treatments of chilling or salinity stresses at both stages. These results suggest that identifying suitable cultivars for use as rootstock during cucumber grafting should involve the evaluation of stress tolerance during different growth stages. Additionally, cultivars tolerant to chilling stress may not be tolerant to salinity stress; therefore, the choice of pumpkin rootstock should depend on where the grafted plant will be grown. Cultivars tolerant to a combination of chilling and salinity stresses may be useful as rootstock for cucumber grafting. Our findings may serve as reference material for choosing appropriate pumpkin rootstocks for cucumber grafting.

Impact of Air Convection on H3PO4-Activated Biomass for Sequestration of Cu (II) and Cd (II) Ions

  • Girgis, Badie S.;Elkady, Ahmed A.;Attia, Amina A.;Fathy, Nady A.;Abdel Wahhab, M. A.
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.114-122
    • /
    • 2009
  • Crushed, depitted peach stones were impregnated activated with 50% $H_3PO_4$ followed by pyrolysis at $500^{\circ}C$. Two activated carbons were produced, one under its own evolved gases during pyrolysis, and the second conducted with air flow throughout the carbonization stage. Physicochemical properties were investigated by several procedures; carbon yield, ash content, elemental chemical analysis, TG/DTG and FTIR spectra. Porosity characteristics were determined by the conventional $N_2$ adsorption at 77 K, and data analyzed to get the major texture parameters of surface area and pore volume. Highly developed activated carbons were obtained, essentially microporous, with slight effect of air on the porous structure. Oxygen was observed to be markedly incorporated in the carbon matrix during the air treatment process. Cation exchange capacity towards Cu (II) and Cd (II) was tested in batch single ion experimental mode, which proved to be slow and a function of carbon dose, time and initial ion concentration. Copper was up taken more favorably than cadmium, under same conditions, and adsorption of both cations was remarkably enhanced as a consequence of the air treatment procedure. Sequestration of the metal ions was explained on basis of the combined effect of the oxygen functional groups and the phosphorous-containing compounds; both contributing to the total surface acidity character.

Effective Comb Type Pilot Assignment and PAPR Reduction in NC-OFDM-Based Communication System (NC-OFDM 기반 통신 시스템에서 효율적인 Comb Type Pilot 배치 방식과 PAPR 저감 기법)

  • An, Dong-Geon;Ryu, Heung-Gyoon;Lee, Seung-Jun;Ko, Dong-Kuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.965-970
    • /
    • 2010
  • Because of a large number of subcarriers, the high PAPR(Peak-to-Average Power Ratio) is the major drawback of NC-OFDM system used for wireless communication system. Comb type pilot assignment is more efficient and lower computational complexity for the channel estimation than the block type pilot. However, even if the CAZAC(Constant Amplitude Zero Autocorrelation) matrix transform is used for the PAPR reduction of the data symbols, PAPR increases when the pilot is inserted in comb type with the data symbols. Therefore, in this paper, we additionally use a new SLM technique in order to lower the PAPR again even in the comb type pilot. Also, a new SLM technique suggested in this paper does not need any additional bandwidth for sending selection information for SLM. This combined method has good PAPR reduction performance and efficient data transmission.