DOI QR코드

DOI QR Code

Resistance of Cucumber Grafting Rootstock Pumpkin Cultivars to Chilling and Salinity Stresses

  • Xu, Yang (College of Horticulture, Nanjing Agricultural University, Key Laboratory of Southern Vegetable Genetic Improvement, Ministry of Agriculture) ;
  • Guo, Shi-rong (College of Horticulture, Nanjing Agricultural University, Key Laboratory of Southern Vegetable Genetic Improvement, Ministry of Agriculture) ;
  • Li, He (College of Horticulture, Nanjing Agricultural University, Key Laboratory of Southern Vegetable Genetic Improvement, Ministry of Agriculture) ;
  • Sun, Hong-zhu (College of Horticulture, Nanjing Agricultural University, Key Laboratory of Southern Vegetable Genetic Improvement, Ministry of Agriculture) ;
  • Lu, Na (Center for Environment, Health and Field Sciences, Chiba University) ;
  • Shu, Sheng (College of Horticulture, Nanjing Agricultural University, Key Laboratory of Southern Vegetable Genetic Improvement, Ministry of Agriculture) ;
  • Sun, Jin (College of Horticulture, Nanjing Agricultural University, Key Laboratory of Southern Vegetable Genetic Improvement, Ministry of Agriculture)
  • Received : 2016.07.05
  • Accepted : 2016.11.08
  • Published : 2017.04.28

Abstract

Grafting using a pumpkin (Cucurbita sp.) rootstock is an effective way to improve cucumber (Cucumis sativus) resistance to a combination of chilling and salinity stresses. We evaluated the tolerance of 15 pumpkin cultivars to chilling, salinity, and combined stresses at the germination and seedling stages. Selected plant characteristics, including germination rate, germination potential, germination index, plant height, stem thickness, fresh weight, and dry weight, were analyzed. We used the unweighted pair group method with arithmetic mean for cluster analyses to determine the stress tolerance levels of the pumpkin cultivars. The 15 cultivars were divided into three clusters: tolerant, moderately tolerant, and susceptible to stress treatments. The stress tolerances of all cultivars were variable in the germination and seedling stages, and most cultivars were not tolerant to individual treatments of chilling or salinity stresses at both stages. These results suggest that identifying suitable cultivars for use as rootstock during cucumber grafting should involve the evaluation of stress tolerance during different growth stages. Additionally, cultivars tolerant to chilling stress may not be tolerant to salinity stress; therefore, the choice of pumpkin rootstock should depend on where the grafted plant will be grown. Cultivars tolerant to a combination of chilling and salinity stresses may be useful as rootstock for cucumber grafting. Our findings may serve as reference material for choosing appropriate pumpkin rootstocks for cucumber grafting.

Keywords

References

  1. Alexieva V, Ivanov S, Sergiev I, Karanov E (2003) Interaction between stresses. Bulg J Plant Physiol Suppl 1:1-17
  2. Balagurova NI, Akimova TV, Titov AF (2000) The effect of local cooling of cucumber and wheat seeding on various kinds of stress resistance of their leaves and roots. Russ J Plant Physiol 48:95-99. doi:10.1023/A:1009010917390
  3. Baysal G, Tipirdamaz R (2007) The effect of salt stress on lipid peroxidation and antioxidative enzyme activities in two cucumber cultivars. J Biol Chem 33:119-129. doi:10.17660/ActaHortic.2007.729.31
  4. Bayuelo-Jimenez JS, Craig R, Lynch JP (2002) Salinity Tolerance of Phaseolus Species during Germination and Early Seedling Growth. Crop Sci 42:1584-1594. doi: 10.2135/cropsci2002.1584
  5. Borowski E, Michalek S (2014) The effect of chilling temperature on germination and early growth of domestic and Canadian soybean (Glycine max (L.) Merr.) cultivars. Acta Scientiarum Polonorum Hortorum Cultus 13:31-34
  6. Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-adaptation. Trends Plant Sci 5:241-246. doi:10.1016/S1360-1385(00)01628-9
  7. Caldwell CR (1994) Modification of the cellular heat sensitivity of cucumber by growth under supplemental ultraviolet-B radiation. Plant Physiol 104:395-399 https://doi.org/10.1104/pp.104.2.395
  8. Cavusoglu K, Kabar K (2010) Effects of hydrogen peroxide on the germination and early seedling growth of barley under NaCl and high temperature stresses. Eurasian J Biosciences 63:205-224. doi:10.5053/ejobios.2010.4.0.9
  9. Colla G, Rouphael Y, Leonardi C, Bie ZL (2010) Role of grafting in vegetable crops grown under saline conditions. Sci Hortic 127:147-155. doi:10.1016/j.scienta.2010.08.004
  10. Falic E, Ilic Z (2014) Grafted vegetables-the influence of rootstock and scion on postharvest quality. Folia Hortic 26:79-90. doi:10.1016/j.scienta.2010.08.004
  11. Ferriol M, Pico B, Cordova PF, Nuez F (2004) Molecular diversity of a germplasm collection of squash (Cucurbita moschata) determined by SRAP and AFLP markers. Crop Sci 44:653-664. doi:10.2135/cropsci2004.6530
  12. Glenn E, Brown J (1998) Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. Am J Bot 85:10-16. doi:10.2307/2446548
  13. Homeijer SJ, Olszta MJ, Barrett RA, Gower RA (2008) Growth of nanofibrous barium carbonate on calcium carbonate seeds. J Crysta Growth 310:2938-2945. doi:10.1016/j.jcrysgro.2008.02.009
  14. Huang Y, Bie ZL, Liu P, Niu ML, Zhen A, Liu ZX, Lei B, Gu DJ, Lu C, Wang BT (2013) Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation. Sci Hortic 149:47-54. doi: 10.1016/j.scienta.2012.04.018
  15. Huang Y, Bie ZL, Liu ZX, Zhen A, Jiao XR (2011) Improving cucumber photosynthetic capacity under NaCl stress by grafting onto two salt-tolerant pumpkin rootstocks. Biol Plant 55:285-290. doi:10.1007/s10535-011-0040-8
  16. Huang Y, Tang R, Cao QL, Bie ZL (2009) Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. Sci Hortic 122:26-31. doi:10.1016/j.scienta.2009.04.004
  17. Jumberi A, Oka M, Fujiyama H (2002) Response of vegetable crops to salinity and sodicity in relation to ionic balance and ability to absorb microelements. Soil Sci Plant Nutr 48:203-209. doi:10.1080/00380768.2002.10409192
  18. Kuk YI, Shin JS (2007) Mechanisms of Low-temperature Tolerance in Cucumber Leaves of Various Ages. J Am Soc Hortic Sci 132:294-301
  19. Lapointe FJ, Legendre P (1992) Statistical significance of the matrix correlation coefficient for comparing independent phylogenetics trees. Systematic Biol 41:378-384. doi:10.2307/2992574
  20. Levitt J (1980) Responses of plants to environmental stresses. Academic Press, New York, USA, pp 200-202
  21. Li H, Guo SR, Gao P, Xing WW, Shu S, Sun J (2014a) Identification for the Thermotolerance of Rootstock-used Pumpkin Germplasms and Selection for the Morphological Indexes. J Plant Genet Resources 15:1239-1247. (in Chinese with English abstract) doi:10.13430 /j.cnki. jpgr. 2014. 06. 011
  22. Li H, Guo SR, Shu S, Du NS, Sun J (2013) Analysis of Chilling-Tolerance in Cucumber (Cucumis sativus L.) Rootstocks. J Shenyang Agric Univ 44:609-615. doi: (in Chinese with English summary)
  23. Li H, Guo SR, Shu S, Xu Y, Sun J (2014b) Germplasm Resources Analysis of Rootstock-used Pumpkins by Phenotype and SSR. Acta Hortic Sin 41:1379-1390. doi:10.16420/j.issn.0513-353x.2014.07.012 (in Chinese with English summary)
  24. Li JY, Tian HX, Li XG, Meng JJ, He QW (2008) Higher Chilling-Tolerance of Grafted-Cucumber Seedling Leaves upon Exposure to Chilling Stress. Agric Sci China 7:570-576. doi:10.1016/S1671-2927(08)60054-1
  25. Li Y, Tian XM, Wei M, Shi QH, Yang FJ, Wang XF (2015) Mechanisms of tolerance differences in cucumber seedlings grafted on rootstocks with different tolerance to low temperature and weak light stresses. Turk J Bot 39:606-614. doi:10.3906/bot-1404-115
  26. Liu MC (1994) Improving Chilling of Cucumber Seedlings Resistance by Seed Hardening. Acta Agric Boreali-Sin 9:23-26. doi:10.3321/j.issn:1000-7091.1994.04.005
  27. Liu Y, Zhou TX, Ge HY, Pang W, Gao LJ, Ren L, Chen HY (2016) SSR Mapping of QTLs Conferring Cold Tolerance in an Interspecific Cross of Tomato. Int J Genom 2:1-6. doi: 10.1155/2016/3219276
  28. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: An overview. Arch Biochem Biophys 444:139-158. doi:10.1016/j.abb.2005.10.018
  29. Mallick N, Mohn FH (2000) Reactive oxygen species: Response of algal cells. J Plant Physiol 157:183-193. doi:10.1016/S0176-1617(00)80189-3
  30. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209-220
  31. Mano Y, Nakazumi H, Takeda K (1996) Varietal Variation in and Effects of Some Major Genes on Salt Tolerance at the Germination Stage in Barley. Breed Sci 46:227-233
  32. Pal D, Malik SK, Kumar S, Choudhary R, Sharma KC, Chaudhury R (2013) Genetic variability and relationship studies of mandarin (Citrus reticulate Blanco) using morphological and molecular markers. Agric Res 2:236-245. doi:10.1007/s40003-013-0072-8
  33. Parkin KL, Marangoni A, Jackman RL, Yada RY, Stanley DW (1989) Chilling Injury. A Review of Possible. J Food Biochem 13:127-153. doi:10.1111/j.1745-4514.1989.tb00389.x
  34. Peeters JP, Martinelli JA (1989) Hierarchical cluster analysis as a tool to manage variation in germplasm collections. Theor Appl Genet 78:42-48. doi:10.1007/bf00299751
  35. Ranawake AL, Manangkil OE, Yoshida S, Ishii T, Mori N, Nakamura C (2014) Mapping QTLs for cold tolerance at germination and the early seedling stage in rice (Oryza sativa L.). Biotechnol Biotechnol Equip 28:989-998. doi: 10.1080/13102818.2014.978539
  36. Relethford JH (1985) Cluster analysis for researchers. By H.C. Romesburg. Belmont, CA: Lifetime Learning Publications. 1984. xiii + 334 pp., figures, tables, appendices, answers, glossary, references, index. $36.00 (cloth). Am J Phys Anthropol 66:457-458 https://doi.org/10.1002/ajpa.1330660415
  37. Rouphael Y, Cardarelli M, Rea E, Colla G (2012) Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynth 50:180-188. doi:10.1007/s11099-012-0002-1
  38. Ryu SB, Costa A, Xin ZG (1995) Induction of cold hardiness by salt stress involves synthesis of cold- and abscisic acid-responsive proteins in potato (Solanum commersonii Dun). Plant Cell Physiol 36:1245-1251. doi: 10.1093/oxfordjournals.pcp.a078882
  39. Schachtman DP (2000) Molecular insights into the structure and function of plant K+ transport mechanisms. Biochim et Biophys Acta 1465:127-139. doi:10.1016/S0005-2736(00)00134-6
  40. Schwarz D, Rouphael Y, Colla G, Venema JH (2010) Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci Hortic 127:162-171. doi:10.1016/j.scienta.2010.09.016
  41. Shah SN, Gong ZH, Arisha MH, Khan A, Tian SL (2015) Effect of ethyl methyl sulfonate concentration and different treatment conditions on germination and seedling growth of the cucumber cultivar Chinese long (9930). Genet Mol Res 14:2440-2449. doi:10.4238/2015.March.30.2
  42. Shahzad A, Ahamad M, Iqbal M, Ahemd I, Ali GM (2012) Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. Genet Mol Res 11:679-692. doi:10.4238/2012.March.19.2
  43. Sivritepe N, Sivritepe HO, Eris A (2003) The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci Hortic 97:229-237. doi:10.1016/S0304-4238(02)00198-X
  44. Sun HZ, Li H, Guo SR, Sun J, Chen LY (2013) Identification of saline resistant pumpkin germplasms. Jiangsu Agric Sci 41:112-116. doi:10.15889/j.issn.1002-1302.2013.03.115 (in Chinese with English abstract)
  45. Scott SJ, Jones RA (1985) Cold tolerance in tomato. I. Seed germination and early seedling growth of Lycopersicon esculentum. Physiol Plant 65:487-492. doi:10.1111/j.1399-3054.1985.tb08678.x
  46. Tajbakhsh M, Zhou M, Chen Z, Mendham NJ (2006) Physiological and cytological response of salt-tolerant and non-tolerant barley to salinity during germination and early growth. Aust J Exp Agric 46:555-562. doi:10.1071/EA05026
  47. Wang CY (1990) Chilling injury of horticultural crops. CRC Press, Florida, USA, 230-233
  48. Wang SK, Yu EC (2013) The senilism symptom, reasons and solutions of winter-spring cucumber cultivation in solar greenhouse. North Hortic 22:209-210 (in Chinese with English abstract)
  49. Wang ZF, Wang FH, Zhou R, Wang JF, Zhang HS (2011) Identification of quantitative trait loci for cold tolerance during the germination and seedling stages in rice (Oryza sativa L.). Euphytica 181:405-413. doi: 10.1007/s10681-011-0469-z
  50. Whitmore ME, Smith PH (1982) Growth effect of SO2 and/or NO2 on woody plants and grasses during spring and summer. Nature 300:55-57. doi:10.1038/300055a0
  51. Xing WW, Li L, Gao P, Li H, Shao QS, Shu S, Sun J, Guo SR (2015) Effects of grafting with pumpkin rootstock on carbohydrate metabolism in cucumber seedlings under $Ca(NO_3)_2$ stress. Plant Physiol Biochem 84:124-132. doi:10.1016/j.plaphy.2014.12.011
  52. Yildirim E, Guvenc (2006) Salt tolerance of pepper cultivars during germination and seedling growth. Turk J Agric For 30:347-353
  53. Zhu J, Bie ZL, Huang Y, Han XY (2008) Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress (Plant Nutrition). Soil Sci Plant Nutr 54:895-902. doi:10.1111/j.1747-0765.2008.00306.x

Cited by

  1. Effect of Cold Stress on Growth, Physiological Characteristics, and Calvin-Cycle-Related Gene Expression of Grafted Watermelon Seedlings of Different Gourd Rootstocks vol.7, pp.10, 2021, https://doi.org/10.3390/horticulturae7100391