• 제목/요약/키워드: Combined heat sources

검색결과 34건 처리시간 0.023초

복합화력발전소 대기오염영향 평가 (Numerical Simulation of Dispersion of Air Pollutants from Combined Cycle Power Plants)

  • 김지현;박영구
    • 한국응용과학기술학회지
    • /
    • 제33권3호
    • /
    • pp.529-539
    • /
    • 2016
  • Modeling은 기상의 흐름, 화학반응 및 대기오염물질의 형성과정 등 대기현상을 과학적으로 이해하고 개발계획 및 대기 개선에 따른 정책수립의 기초자료로 활용된다. 최근 컴퓨팅 계산능력이 발전하면서 수치모델의 모델링 영역과 모델결과의 이용분야가 점차 다양해지고 있으며, 오염물질 발생원으로부터 시간의 흐름에 따라 오염물질농도를 예측이 가능해졌다. 본 연구는 일산열병합발전소 및 고양시 소각장 주변지역을 대상으로 CALPUFF 확산모델을 적용하여 대기 중 배출 된 NO와 TSP의 확산을 모사하고, 실제 측정결과와 비교함으로써 배출원에 의한 주변지역의 기여농도를 검토하였다. 1, 2차 $NO_2$ 기여율 비교 결과 A-3 지점이 타 지점에 비해 비교적 높게 나타났으며, 이는 열병합발전소 및 소각시설에서 배출되는 질소산화물의 영향이 타 지역에 비해 비교적 높다는 것을 알 수 있다. 1, 2차 TSP 기여율 비교 결과 A-5 지점이 비교적 타 지점에 비해 다소 높게 나타났으나, 기여율 값이 매우 낮음에 따라 열병합발전소 및 소각시설에서 배출되는 먼지에 의한 영향은 비교적 낮다고 판단된다.

저온 열원의 활용을 위한 흡수 발전/냉각 복합 사이클의 열적 해석 (Thermal Analysis of a Combined Absorption Cycle of Cogeneration of Power and Cooling for Use of Low Temperature Source)

  • 김경훈
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.413-420
    • /
    • 2011
  • Thermodynamic cycles using binary mixtures as working fluids offer a high potential for utilization of low-temperature heat sources. This paper presents a thermodynamic performance analysis of Goswami cycle which was recently suggested to produce power and cooling simultaneously and combines the Rankine cycle and absorption refrigeration cycle by using ammoniawater mixture as working fluid. Effects of the system parameters such as concentration of ammonia and turbine inlet pressure on the system are parametrically investigated. Results show that refrigeration capacity or thermal efficiency has an optimum value with respect to ammonia concentration as well as to turbine inlet pressure.

석탄가스화 화학반응의 기본 특성 분석 연구 (Characteristics of Chemical Reactions in Coal Gasification Processes)

  • 백승철;손정락;송성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3125-3130
    • /
    • 2008
  • Coal is one of the most abundant and cheapest energy sources in the earth, but its typical combustion product, $CO_2$, is related with serious recent environmental issues such as global warming. The Integrated Coal Gasification Combined Cycle (IGCC) with $CO_2$ sequestration is one of the most promising options to produce electricity using a relatively cheap fuel (coal) with minimum impact on environment. In IGCC power generation systems, some chemical reactions are required to gasify coal to produce syngases such as $H_2$ and CO, which would be burnt in the combustor to produce heat for power generation, with a penalty of additional energy consumption. In this paper, several chemical reactions for the gasification of coal are considered and their characteristics are investigated.

  • PDF

Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • 제77권3호
    • /
    • pp.315-327
    • /
    • 2021
  • Here, in this research we have studied a two dimensional problem in a homogeneous orthotropic magneto-thermoelastic medium with higher order dual-phase-lag heat transfer with combined effects of rotation and hall current in generalized thermoelasticity due to time harmonic sources. As an application the bounding surface is subjected to uniformly distributed and concentrated loads (mechanical and thermal source). Fourier transform technique is used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in frequency domain. Numerical inversion technique has been used to obtain the results in physical domain. The effect of frequency has been depicted with the help of graphs.

유기랭킨사이클로 구동되는 증기압축냉동사이클의 엑서지 해석 (Exergy Analysis of Vapor Compression Cycle Driven by Organic Rankine Cycle)

  • 김경훈
    • 대한기계학회논문집B
    • /
    • 제37권12호
    • /
    • pp.1137-1145
    • /
    • 2013
  • 본 연구에서는 열 구동 냉동사이클로서 유기 랭킨사이클 (ORC)과 증기 압축 냉동사이클(VCC)의 복합 사이클에 대한 엑서지 해석을 수행하였다. 시스템의 열원으로는 다양한 재생 에너지 열원이나 산업체에서의 폐열 등 현열 형태의 저온 열원을 고려하였으며 작동유체로서 R143a, R22, R134a, 프로판, 이소부탄, 부탄, R245fa 및 R123 등 여덟가지 작동유체들을 고려하였다. 터빈 입구 압력의 변화나 작동유체의 종류에 따라 시스템의 COP 나 엑서지 효율은 물론 시스템의 각 요소에서의 엑서지 파괴 (아너지)에 미치는 다양한 영향에 대해 분석하고 논의하였다. 해석 결과는 주어진 열원 온도에 대해 시스템에서 가장 엑서지 파괴가 큰 구성 요소는 터빈 입구 압력과 작동유체에 따라 민감하게 변화하는 사실을 보여준다.

목질계 바이오매스를 이용한 바이오에너지 기술개발 동향 (Trend on Technology Development of Bioenergy from Woody Biomass)

  • 권구중;김남훈
    • Journal of Forest and Environmental Science
    • /
    • 제25권2호
    • /
    • pp.131-138
    • /
    • 2009
  • Recently, various efforts for the extended utilization of woody biomass has been attempted due to the fact that global warming, energy and environmental problems are urgent ones to be solved. Development of new energy sources at our national security level is desperately needed as we depend on almost all of energies supplied from other countries, let alone the economic crisis caused by oil price hike. Woody biomass can be converted to energy by means of thermochemical, biological, or direct combustion processes. Many processes are available for producing bioenergy, such as bioethanol, wood pellet, wood chip, combined heat, and power system. Political support and R&D investment should be provided that can boost the utilization of the wood biomass, the eco-environment, and recyclable and alternative energy resources for national power security. In addition, a long-term strategy that can utilize unused and low efficient woody biomass resources, and systematically collect and manage them in a national level should be set up. Even though the possibility in total exchange of fossil oil with woody biomass is quite low, technology developments of woody biomass for the solution to global warming and environmental problem through its commercialization are expected to grow steadily.

  • PDF

신재생에너지발전의 확률적인 특성과 탄소배출권을 고려한 마이크로그리드 최적 운용 (A Study on Optimal Operation of Microgrid Considering the Probabilistic Characteristics of Renewable Energy Generation and Emissions Trading Scheme)

  • 김지훈;이병하
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.18-26
    • /
    • 2014
  • A microgrid can play a significant role for enlargement of renewable energy sources and emission reduction because it is a network of small, distributed electrical power generators operated as a collective unit. In this paper, an application of optimization method to economical operation of a microgrid is studied. The microgrid to be studied here is composed of distributed generation system(DGS), battery systems and loads. The distributed generation systems include combined heat and power(CHP) and small generators such as diesel generators and the renewable energy generators such as photovoltaic(PV) systems, wind power systems. Both of thermal loads and electrical loads are included here as loads. Also the emissions trading scheme to be applied in near future, the cost of unit start-up and the operational characteristics of battery systems are considered as well as the probabilistic characteristics of the renewable energy generation and load. A mathematical equation for optimal operation of this system is modeled based on the mixed integer programming. It is shown that this optimization methodology can be effectively used for economical operation of a microgrid by the case studies.

온실가스 감축 및 지속가능 미래를 위한 집단에너지사업 방향 (Current and Future Trends of District Heating System for a Sustainable Future and Greenhouse Gas Reduction)

  • 정민정;박진규;안덕용;이남훈
    • 한국기후변화학회지
    • /
    • 제8권4호
    • /
    • pp.377-384
    • /
    • 2017
  • Amid growing concerns about energy security, energy prices, economic competitiveness, and climate change, district heating (DH) system has been recognized for its significant benefits and the part it can play in efficiently meeting society's growing energy demands while reducing environmental impacts. Policy makers often need to quantify the fuel and carbon dioxide ($CO_2$) emissions savings of DH system compared to conventional individual heating (IH) system in order to estimate its actual emissions reductions. The objective of this paper is to calculate energy efficiency and $CO_2$ emissions saving, and to propose the future direction for DH system in Korea. DH system achieved total system efficiencies of 67.9% compared to 54.1% for IH system in 2015. DH system reduced $CO_2$ emissions by $381,311ton-CO_2$ (4.1%) compared to IH system. The results suggest that DH system is more preferred than IH system using natural gas. In Korea, the aim is to reduce dependence on fossil fuels and to use energy more efficiently. DH system have significant potential with regard to achieving this aim, because DH system are already integrated with power generation in the electricity since combined heating and power (CHP) are used for heat supply. Although the future conditions for DH may look promising, the current DH system in Korea must be enhanced in order to handle future competition. Thus, the next DH system must be integrated with multiple renewable energy and waste heat energy sources.

Effects of Interfacial Dielectric Layers on the Electrical Performance of Top-Gate In-Ga-Zn-Oxide Thin-Film Transistors

  • Cheong, Woo-Seok;Lee, Jeong-Min;Lee, Jong-Ho;KoPark, Sang-Hee;Yoon, Sung-Min;Byun, Chun-Won;Yang, Shin-Hyuk;Chung, Sung-Mook;Cho, Kyoung-Ik;Hwang, Chi-Sun
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.660-666
    • /
    • 2009
  • We investigate the effects of interfacial dielectric layers (IDLs) on the electrical properties of top-gate In-Ga-Zn-oxide (IGZO) thin film transistors (TFTs) fabricated at low temperatures below $200^{\circ}C$, using a target composition of In:Ga:Zn = 2:1:2 (atomic ratio). Using four types of TFT structures combined with such dielectric materials as $Si_3N_4$ and $Al_2O_3$, the electrical properties are analyzed. After post-annealing at $200^{\circ}C$ for 1 hour in an $O_2$ ambient, the sub-threshold swing is improved in all TFT types, which indicates a reduction of the interfacial trap sites. During negative-bias stress tests on TFTs with a $Si_3N_4$ IDL, the degradation sources are closely related to unstable bond states, such as Si-based broken bonds and hydrogen-based bonds. From constant-current stress tests of $I_d$ = 3 ${\mu}A$, an IGZO-TFT with heat-treated $Si_3N_4$ IDL shows a good stability performance, which is attributed to the compensation effect of the original charge-injection and electron-trapping behavior.

300MW급 Shell형 1단 분류층 석탄 가스화기의 전산수치해석 : 산소/스팀/석탄 주입비, 석탄입자 크기, 주입 노즐 각도가 가스화기 성능에 미치는 영향 (CFD Modeling for 300MW Shell-Type One-Stage Entrained Flow Coal Gasifier : Effect of $O_2$/Steam/Coal Ratios, Coal Particle Sizes, and Inlet Angles on the Gasifier Performance)

  • 송지훈;강민웅;서동균;임성진;백민수;황정호
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.227-240
    • /
    • 2010
  • Coal gasification is heading for a great future as one of the cleanest energy sources, which can produce not only electricity and heat, but also gaseous and liquid fuels from the synthesis. The work focuses on 300MW shell type one-stage entrained flow coal gasifier which is used in the Integrated coal Gasification Combined Cycle(IGCC) plant as a reactor. As constructing an IGCC plant is considerably complicated and expensive compared with a pulverized-coal power plant, it is important to determine optimum design factors and operating conditions using a computational fluid dynamics (CFD) model. In this study, the results of numerical calculations show that $O_2$/Coal ratio, 0.83, Steam/Coal ratio, 0.05, coal particle diameter, $100{\mu}m$, injection angle, $4^{\circ}$ (clockwise) are the most optimum in this research.