• Title/Summary/Keyword: Combined Stress

Search Result 1,054, Processing Time 0.029 seconds

Seismic Qualification Analysis of a Vertical-Axis Wind Turbine (소형 수직축 풍력발전기의 내진검증 해석)

  • Choi, Young-Hyu;Hong, Min-Gi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • The static and dynamic structural integrity qualification was performed through the seismic analysis of a small-size Savonius-type vertical wind turbine at dead weight plus wind load and seismic loads. The ANSYS finite element program was used to develop the FEM model of the wind turbine and to accomplish static, modal, and dynamic frequency response analyses. The stress of the wind turbine structure for each wind load and dead weight was calculated and combined by taking the square root of the sum of the squares (SRSS) to obtain static stresses. Seismic response spectrum analysis was also carried out in the horizontal (X and Y) and vertical (Z) directions to determine the response stress distribution for the required response spectrum (RRS) at safe-shutdown earthquake with a 5% damping (SSE-5%) condition. The stress resulting from the seismic analysis in each of the three directions was combined with the SRSS to yield dynamic stresses. These static and dynamic stresses were summed by using the same SRSS. Finally, this total stress was compared with the allowable stress design, which was calculated based on the requirements of the KBC 2009, KS C IEC 61400-1, and KS C IEC 61400-2 codes.

A Study on the Crack Growth Behavior of a Inclined Crack in a Non-Uniform Thickness Material (두께가 일정하지 않은 재료에서 경사진 균열의 성장거동에 관한 연구)

  • 조명래;표창률;박종주;고명훈
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.27-38
    • /
    • 1997
  • The effect of geometry factors on the combined mode stress intensity factor behaviors of a slant crack in a non-uniform thickness material was analysed by 2-dimensional theoretical analysis. The analysis is based on the Laurent's series expansions of complex potentials where the complex coefficients of the series are determined from the compatibility and the equilibrium conditions of the thickness interface and the stress free conditions of the crack surface. In numerical calculations the perturbation technique is employed. The expressions for the crack tip stress intensity factor are given in the form of power series of dimensionless crack length $\lamda$, and the function of crack slant angle $\alpha$ and thickness ratio $\beta$. The results of numerical calculations for each problems are represented as the correction factors F($\lamda$, $\alpha$, $\beta$). The results clearly show the following characteristics : The correction factors of the combined mode stress intensity factors for a non-uniform thickness material can be defined in the form of F($\lamda$, $\alpha$, $\beta$). The stress intensity factor values for a given crack length are decreased with increase of thickness ratio $\beta$.

  • PDF

New Engineering J and COD Estimation Methods for Axial Through-Wall Cracked Pipes (축방향 관통균열 배관의 새로운 탄소성 J-적분 및 COD 계산식)

  • Huh, Nam-Su;Park, Young-Jae;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.239-246
    • /
    • 2003
  • This paper proposes engineering estimation equations of elastic-plastic J and COD fur axial through-wall cracked pipes under internal pressure. Based on detailed 3-D FE results based on deformation plasticity, the plastic influence functions for fully plastic J and COD solutions are tabulated as a function of the mean radius-to-thickness ratio, the normalized crack length. and the strain hardening. Based on these results, the GE/EPRI-type J and COD estimation equations are proposed and validated against the 3-D FE results based on deformation plasticity. For more general application to general stress-strain laws or to complex loading, the developed GE/EPRI-type solutions are re-formulated based on the reference stress concept. Such a reformulation provides simpler equations for J and COD, which are then further extended to combined internal pressure and bending. The proposed reference stress based J and COD estimation equations are compared with elastic-plastic 3-D FE results using actual stress-strain data for Type 316 stainless steels. The FE results for both internal pressure cases and combined internal pressure and bending cases compare very well with the proposed J and COD estimations.

Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings (인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측)

  • 박성완;이장규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.352-361
    • /
    • 2003
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was develope(1 where modules decay ratios in tension and shear on used as indicators for damage variables D . In the model, the damage variables are considered to be second-order tensors. Then the maximum principal damage variable, $D^*$ is introduced According to the similarity to the Principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D']. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the fatigue characteristics only under uniaxial tension and pure torsion loadings on needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

  • PDF

Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings (인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측)

  • Park Sung-Oan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.64-73
    • /
    • 2004
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was developed where modulus decay ratios in tension and shear were used as indicators for damage variables D. In the model, the damage variables are considered to be second-order tensors. Then, the maximum principal damage variable, $D^*$ is introduced. According to the similarity to the principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D]. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the Fatigue characteristics only under uniaxial tension and pure torsion loadings were needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

A Study on the Aging Characteristics and Life Diagnosis of Insulating Materials for Power Cable (전력케이블용 절연재료의 열화특성 및 수명진단에 관한 연구)

  • 박홍태;김경석;남창우;이규철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.11-17
    • /
    • 1999
  • Aging characteristics of the crosslinked polyethylene have been measured after applying electrical, thermal and combined stresses. ICP and FT-IR measurements confirmed diffusion of low molecular weight components such as antioxidant and presence of carbonyl group. Carbonyl group of aged crosslinked polyethylene under combined stress was detected by FT-IR. As deterioration of the crosslinked polyethylene progresses, crystallinity degree and density decrease. Also, dielectric properties have been measured by tan $\delta$ and $\varepsilon$$_{r}$ measurements. The three-parameter Weibull distribution was found to be the best suited among other probabilistic distribution representing the dielectric breakdown strength of aged crosslinked polyethylene. The scale parameter and location parameter decreases as the applied stress increases. The shape parameter increases as the stress increases.s.

  • PDF

Risk Assessment Technique for Gas Fuel Supply System of Combined Cycle Power Plants (II) : Based on Piping System Stress Analysis (복합화력발전의 가스연료 공급계통에 대한 위험도 평가 기법 연구 (II) : 배관 시스템 응력 해석을 이용한 위험도 평가)

  • Yu, Jong Min;Song, Jung Soo;Jeong, Tae Min;Lok, Vanno;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.14-25
    • /
    • 2018
  • The combined cycle power plant has a cycle of operating the gas turbine with fuel, such as natural gas, and then producing steam using residual heat. The fuel gas is supplied to the gas turbine at a level of 4 to 5 MPa, $200^{\circ}C$ through a compressor and a heat exchanger. In this study, the risk assessment method considering the piping system stress was carried out for safe operation and soundness of the gas fuel supply piping system. The API 580/581 RBI code, which is well known for its risk assessment techniques, is limited to reflect the effect of piping stress on risk. Therefore, the systematic stress of the pipeline is analyzed by using the piping analysis. For the study, the piping system stress analysis was performed using design data of a gas fuel supply piping of a combined cycle power plant. The result of probability of failure evaluated by the API code is compared to the result of stress ratio by piping analysis.

An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws

  • Yang, Sheng-Qi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.541-557
    • /
    • 2015
  • This research aims to analyze the fracture coalescence characteristics of brittle sandstone specimen ($80{\times}160{\times}30mm$ in size) containing various flaws (a single fissure, double squares and combined flaws). Using a rock mechanics servo-controlled testing system, the strength and deformation behaviours of sandstone specimen containing various flaws are experimentally investigated. The results show that the crack initiation stress, uniaxial compressive strength and peak axial strain of specimen containing a single fissure are all higher than those containing double squares, while which are higher than those containing combined flaws. For sandstone specimen containing combined flaws, the uniaxial compressive strength of sandstone increase as fissure angle (${\alpha}$) increases from $30^{\circ}$ to $90^{\circ}$, which indicates that the specimens with steeper fissure angles can support higher axial capacity for ${\alpha}$ greater than $30^{\circ}$. In the entire deformation process of flawed sandstone specimen, crack evolution process is discussed detailed using photographic monitoring technique. For the specimen containing a single fissure, tensile wing cracks are first initiated at the upper and under tips of fissure, and anti-tensile cracks and far-field cracks are also observed in the deformation process; moreover anti-tensile cracks usually accompanies with tensile wing cracks. For the specimen containing double squares, tensile cracks are usually initiated from the top and bottom edge of two squares along the direction of axial stress, and in the process of final unstable failure, more vertical splitting failures are observed in the ligament region. When a single fissure and double squares are formed together into combined flaws, the crack coalescence between the fissure tips and double squares plays a significant role for ultimate failure of the specimen containing combined flaws.

Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings

  • Velazquez-Santilla, Francisco;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.49-69
    • /
    • 2018
  • This paper shows an optimal design for reinforced concrete rectangular combined footings based on a criterion of minimum cost. The classical design method for reinforced concrete rectangular combined footings is: First, a dimension is proposed that should comply with the allowable stresses (Minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity withstand by the soil); subsequently, the effective depth is obtained due to the maximum moment and this effective depth is checked against the bending shear and the punching shear until, it complies with these conditions, and then the steel reinforcement is obtained, but this is not guaranteed that obtained cost is a minimum cost. A numerical experimentation shows the model capability to estimate the minimum cost design of the materials used for a rectangular combined footing that supports two columns under an axial load and moments in two directions at each column in accordance to the building code requirements for structural concrete and commentary (ACI 318S-14). Numerical experimentation is developed by modifying the values of the rectangular combined footing to from "d" (Effective depth), "b" (Short dimension), "a" (Greater dimension), "${\rho}_{P1}$" (Ratio of reinforcement steel under column 1), "${\rho}_{P2}$" (Ratio of reinforcement steel under column 2), "${\rho}_{yLB}$" (Ratio of longitudinal reinforcement steel in the bottom), "${\rho}_{yLT}$" (Ratio of longitudinal reinforcement steel at the top). Results show that the optimal design is more economical and more precise with respect to the classical design. Therefore, the optimal design presented in this paper should be used to obtain the minimum cost design for reinforced concrete rectangular combined footings.

Fatigue Crack Retardation by Concurrent Cold-Expansion and Ring-indentation (홀확장과 링압인 동시적용에 의한 피로균열지연)

  • Yu, Jin-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.305-316
    • /
    • 1997
  • A more efficient method for obtaining the fatigue life enhancement of a structure member with fastener holes is described. It is based on the combined process of cold-expansion and ring-indentation. Residual stresses were induced onto premachined holes using ring-indentation process near the fastener hole combined with cold-expansion. And residual stresses at the vicinity of a hole were evaluated using a fracture mechanics approach. The compressive residual stresses were larger using the combined process than is in the case of simple cold-expansion. Fatigue testing of aluminum specimens showed that the fatigue crack growth retardation emanating from a circular hole was greater for the combined process than for a simple cold-expansion alone.