• Title/Summary/Keyword: Combinatorial optimization

Search Result 273, Processing Time 0.019 seconds

Search for new phosphors for flat panel displays and lightings using combinatorial chemistry and computational optimization

  • Sohn, Kee-Sun;Jung, Yu-Sun;Cho, Sang-Ho;Kulshreshtha, Chandramouli
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.33-38
    • /
    • 2006
  • An evolutionary optimization process involving genetic algorithm and combinatorial chemistry was employed in an attempt to develop titanate-based red phosphors suitable for tri-color white light emitting diodes We screened a eight-cation oxide system including $(K,Li,Na)_x(Y,Gd,La,Eu)_yTi_zO_{\delta}$ in terms of luminescent efficiency. The combination of genetic algorithm and combinatorial chemistry was proven to enhance the searching efficiency when applied for phosphor screening. As a result, the composition was optimized to be $(Na_{0.92}Li_{0.08})(Y_{0.8}Gd_{0.2})TiO_4:Eu^{3+}$, The luminance of this phosphor was 110 % of that of well-known scheelite variant phosphor at an excitation of 400 nm.

  • PDF

Neighbor Generation Strategies of Local Search for Permutation-based Combinatorial Optimization

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.27-35
    • /
    • 2021
  • Local search has been used to solve various combinatorial optimization problems. One of the most important factors in local search is the method of generating a neighbor solution. In this paper, we propose neighbor generation strategies of local search for permutation-based combinatorial optimization, and compare the performance of each strategies targeting the traveling salesman problem. In this paper, we propose a total of 10 neighbor generation strategies. Basically, we propose 4 new strategies such as Rotation in addition to the 4 strategies such as Swap which have been widely used in the past. In addition, there are Combined1 and Combined2, which are made by combining basic neighbor generation strategies. The experiment was performed by applying the basic local search, but changing only the neighbor generation strategy. As a result of the experiment, it was confirmed that the performance difference is large according to the neighbor generation strategy, and also confirmed that the performance of Combined2 is the best. In addition, it was confirmed that Combined2 shows better performance than the existing local search methods.

Profit-based Thermal Unit Maintenance Scheduling under Price Volatility by Reactive Tabu Search

  • Sugimoto Junjiro;Yokoyama Ryuichi
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.331-338
    • /
    • 2005
  • In this paper, an improved maintenance scheduling approach suitable for the competitive environment is proposed by taking account of profits and costs of generation companies and the formulated combinatorial optimization problem is solved by using Reactive Tabu search (RTS). In competitive power markets, electricity prices are determined by the balance between demand and supply through electric power exchanges or by bilateral contracts. Therefore, in decision makings, it is essential for system operation planners and market participants to take the volatility of electricity price into consideration. In the proposed maintenance scheduling approach, firstly, electricity prices over the targeted period are forecasted based on Artificial Neural Network (ANN) and also a newly proposed aggregated bidding curve. Secondary, the maintenance scheduling is formulated as a combinatorial optimization problem with a novel objective function by which the most profitable maintenance schedule would be attained. As an objective function, Opportunity Loss by Maintenance (OLM) is adopted to maximize the profit of generation companies (GENCOS). Thirdly, the combinatorial optimization maintenance scheduling problem is solved by using Reactive Tabu Search in the light of the objective functions and forecasted electricity prices. Finally, the proposed maintenance scheduling is applied to a practical test power system to verify the advantages and practicability of the proposed method.

Approximation Algorithm for Multi Agents-Multi Tasks Assignment with Completion Probability (작업 완료 확률을 고려한 다수 에이전트-다수 작업 할당의 근사 알고리즘)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • A multi-agent system is a system that aims at achieving the best-coordinated decision based on each agent's local decision. In this paper, we consider a multi agent-multi task assignment problem. Each agent is assigned to only one task and there is a completion probability for performing. The objective is to determine an assignment that maximizes the sum of the completion probabilities for all tasks. The problem, expressed as a non-linear objective function and combinatorial optimization, is NP-hard. It is necessary to design an effective and efficient solution methodology. This paper presents an approximation algorithm using submodularity, which means a marginal gain diminishing, and demonstrates the scalability and robustness of the algorithm in theoretical and experimental ways.

A Novel Binary Ant Colony Optimization: Application to the Unit Commitment Problem of Power Systems

  • Jang, Se-Hwan;Roh, Jae-Hyung;Kim, Wook;Sherpa, Tenzi;Kim, Jin-Ho;Park, Jong-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.174-181
    • /
    • 2011
  • This paper proposes a novel binary ant colony optimization (NBACO) method. The proposed NBACO is based on the concept and principles of ant colony optimization (ACO), and developed to solve the binary and combinatorial optimization problems. The concept of conventional ACO is similar to Heuristic Dynamic Programming. Thereby ACO has the merit that it can consider all possible solution sets, but also has the demerit that it may need a big memory space and a long execution time to solve a large problem. To reduce this demerit, the NBACO adopts the state probability matrix and the pheromone intensity matrix. And the NBACO presents new updating rule for local and global search. The proposed NBACO is applied to test power systems of up to 100-unit along with 24-hour load demands.

Intelligent Route Construction Algorithm for Solving Traveling Salesman Problem

  • Rahman, Md. Azizur;Islam, Ariful;Ali, Lasker Ershad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.33-40
    • /
    • 2021
  • The traveling salesman problem (TSP) is one of the well-known and extensively studied NPC problems in combinatorial optimization. To solve it effectively and efficiently, various optimization algorithms have been developed by scientists and researchers. However, most optimization algorithms are designed based on the concept of improving route in the iterative improvement process so that the optimal solution can be finally found. In contrast, there have been relatively few algorithms to find the optimal solution using route construction mechanism. In this paper, we propose a route construction optimization algorithm to solve the symmetric TSP with the help of ratio value. The proposed algorithm starts with a set of sub-routes consisting of three cities, and then each good sub-route is enhanced step by step on both ends until feasible routes are formed. Before each subsequent expansion, a ratio value is adopted such that the good routes are retained. The experiments are conducted on a collection of benchmark symmetric TSP datasets to evaluate the algorithm. The experimental results demonstrate that the proposed algorithm produces the best-known optimal results in some cases, and performs better than some other route construction optimization algorithms in many symmetric TSP datasets.

SA-selection-based Genetic Algorithm for the Design of Fuzzy Controller

  • Han Chang-Wook;Park Jung-Il
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.236-243
    • /
    • 2005
  • This paper presents a new stochastic approach for solving combinatorial optimization problems by using a new selection method, i.e. SA-selection, in genetic algorithm (GA). This approach combines GA with simulated annealing (SA) to improve the performance of GA. GA and SA have complementary strengths and weaknesses. While GA explores the search space by means of population of search points, it suffers from poor convergence properties. SA, by contrast, has good convergence properties, but it cannot explore the search space by means of population. However, SA does employ a completely local selection strategy where the current candidate and the new modification are evaluated and compared. To verify the effectiveness of the proposed method, the optimization of a fuzzy controller for balancing an inverted pendulum on a cart is considered.

Emergency Service Restoration and Load Balancing in Distribution Networks Using Feeder Loadings Balance Index (피더부하 균등화지수를 이용한 배전계통의 긴급정전복구 및 부하균등화)

  • Choe, Sang-Yeol;Jeong, Ho-Seong;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.5
    • /
    • pp.217-224
    • /
    • 2002
  • This paper presents an algorithm to obtain an approximate optimal solution for the service restoration and load balancing of large scale radial distribution system in a real-time operation environment. Since the problem is formulated as a combinatorial optimization problem, it is difficult to solve a large-scale combinatorial optimization problem accurately within the reasonable computation time. Therefore, in order to find an approximate optimal solution quickly, the authors proposed an algorithm which combines optimization technique called cyclic best-first search with heuristic based feeder loadings balance index for computational efficiency and robust performance. To demonstrate the validity of the proposed algorithm, numerical calculations are carried out the KEPCO's 108 bus distribution system.

Clustering by Accelerated Simulated Annealing

  • Yoon, Bok-Sik;Ree, Sang-Bok
    • Korean Management Science Review
    • /
    • v.15 no.2
    • /
    • pp.153-159
    • /
    • 1998
  • Clustering or classification is a very fundamental task that may occur almost everywhere for the purpose of grouping. Optimal clustering is an example of very complicated combinatorial optimization problem and it is hard to develop a generally applicable optimal algorithm. In this paper we propose a general-purpose algorithm for the optimal clustering based on SA(simulated annealing). Among various iterative global optimization techniques imitating natural phenomena that have been proposed and utilized successfully for various combinatorial optimization problem, simulated annealing has its superiority because of its convergence property and simplicity. We first present a version of accelerated simulated annealing(ASA) and then we apply ASA to develop an efficient clustering algorithm. Application examples are also given.

  • PDF

Combinatorial Optimization Model of Air Strike Packages based on Target Groups (표적군 기반 공격 편대군 조합 최적화 모형)

  • Cho, Sanghyeon;Lee, Moongul;Jang, Youngbai
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.6
    • /
    • pp.386-394
    • /
    • 2016
  • In this research, in order to optimize the multi-objective function effectively, we suggested the optimization model to maximize the total destruction of ground targets and minimize the total damage of aircrafts and cost of air munitions by using goal programming. To satisfy the various variables and constraints of this mathematical model, the concept of air strike package is applied. As a consequence, effective attack can be possible by identifying the prior ground targets more quickly. This study can contribute to maximize the ROK air force's combat power and preservation of high value air asset in the war.