• Title/Summary/Keyword: Combinatorial optimization

Search Result 273, Processing Time 0.019 seconds

Genetic-Based Combinatorial Optimization Method for Design of Rolling Element Bearing (구름 베어링 설계를 위한 유전 알고리듬 기반 조합형 최적설계 방법)

  • 윤기찬;최동훈;박창남
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.166-171
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design for the application-based exclusive rolling element bearings, this study propose design methodologies by using a genetic-based combinatorial optimization. By the presence of discrete variables such as the number of rolling element (standard component) and by the engineering point of views, the design problem of the rolling element bearing can be characterized by the combinatorial optimization problem as a fully discrete optimization. A genetic algorithm is used to efficiently find a set of the optimum discrete design values from the pre-defined variable sets. To effectively deal with the design constraints and the multi-objective problem, a ranking penalty method is suggested for constructing a fitness function in the genetic-based combinatorial optimization. To evaluate the proposed design method, a robust performance analyzer of ball bearing based on quasi-static analysis is developed and the computer program is applied to some design problems, 1) maximize fatigue life, 2) maximize stiffness, 3) maximize fatigue life and stiffness, of a angular contact ball bearing. Optimum design results are demonstrate the effectiveness of the design method suggested in this study. It believed that the proposed methodologies can be effectively applied to other multi-objective discrete optimization problems.

  • PDF

AN IMPROVED COMBINATORIAL OPTIMIZATION ALGORITHM FOR THE THREE-DIMENSIONAL LAYOUT PROBLEM WITH BEHAVIORAL CONSTRAINTS

  • Jun, Tie;Wang, Jinzhi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.283-290
    • /
    • 2008
  • This paper is motivated by the problem of fitting a group of cuboids into a simplified rotating vessel of the artificial satellite. Here we introduce a combinatorial optimization model which reduces the three-dimensional layout problem with behavioral constraints to a finite enumeration scheme. Moreover, a global combinatorial optimization algorithm is described in detail, which is an improved graph-theoretic heuristic.

  • PDF

A Note on Robust Combinatorial Optimization Problem

  • Park, Kyung-Chul;Lee, Kyung-Sik
    • Management Science and Financial Engineering
    • /
    • v.13 no.1
    • /
    • pp.115-119
    • /
    • 2007
  • In [1], robust combinatorial optimization problem is introduced, where a positive integer $\Gamma$ is used to control the degree of robustness. The proposed algorithm needs solutions of n+1 nominal problems. In this paper, we show that the number of problems needed reduces to $n+1-\Gamma$.

An Empirical Data Driven Optimization Approach By Simulating Human Learning Processes (인간의 학습과정 시뮬레이션에 의한 경험적 데이터를 이용한 최적화 방법)

  • Kim Jinhwa
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.4
    • /
    • pp.117-134
    • /
    • 2004
  • This study suggests a data driven optimization approach, which simulates the models of human learning processes from cognitive sciences. It shows how the human learning processes can be simulated and applied to solving combinatorial optimization problems. The main advantage of using this method is in applying it into problems, which are very difficult to simulate. 'Undecidable' problems are considered as best possible application areas for this suggested approach. The concept of an 'undecidable' problem is redefined. The learning models in human learning and decision-making related to combinatorial optimization in cognitive and neural sciences are designed, simulated, and implemented to solve an optimization problem. We call this approach 'SLO : simulated learning for optimization.' Two different versions of SLO have been designed: SLO with position & link matrix, and SLO with decomposition algorithm. The methods are tested for traveling salespersons problems to show how these approaches derive new solution empirically. The tests show that simulated learning for optimization produces new solutions with better performance empirically. Its performance, compared to other hill-climbing type methods, is relatively good.

A Hybrid of Evolutionary Search and Local Heuristic Search for Combinatorial Optimization Problems

  • Park, Lae-Jeong;Park, Cheol-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.6-12
    • /
    • 2001
  • Evolutionary algorithms(EAs) have been successfully applied to many combinatorial optimization problems of various engineering fields. Recently, some comparative studies of EAs with other stochastic search algorithms have, however, shown that they are similar to, or even are not comparable to other heuristic search. In this paper, a new hybrid evolutionary algorithm utilizing a new local heuristic search, for combinatorial optimization problems, is presented. The new intelligent local heuristic search is described, and the behavior of the hybrid search algorithm is investigated on two well-known problems: traveling salesman problems (TSPs), and quadratic assignment problems(QAPs). The results indicate that the proposed hybrid is able to produce solutions of high quality compared with some of evolutionary and simulated annealing.

  • PDF

Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem

  • Eddaly, Mansour;Jarboui, Bassem;Siarry, Patrick
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-311
    • /
    • 2016
  • This paper addresses to the flowshop scheduling problem with blocking constraints. The objective is to minimize the makespan criterion. We propose a hybrid combinatorial particle swarm optimization algorithm (HCPSO) as a resolution technique for solving this problem. At the initialization, different priority rules are exploited. Experimental study and statistical analysis were performed to select the most adapted one for this problem. Then, the swarm behavior is tested for solving a combinatorial optimization problem such as a sequencing problem under constraints. Finally, an iterated local search algorithm based on probabilistic perturbation is sequentially introduced to the particle swarm optimization algorithm for improving the quality of solution. The computational results show that our approach is able to improve several best known solutions of the literature. In fact, 76 solutions among 120 were improved. Moreover, HCPSO outperforms the compared methods in terms of quality of solutions in short time requirements. Also, the performance of the proposed approach is evaluated according to a real-world industrial problem.

DEVELOPMENT OF A TABU SEARCH HEURISTIC FOR SOLVING MULTI-OBJECTIVE COMBINATORIAL PROBLEMS WITH APPLICATIONS TO CONSTRUCTING DISCRETE OPTIMAL DESIGNS

  • JOO SUNG JUNG;BONG JIN YUM
    • Management Science and Financial Engineering
    • /
    • v.3 no.1
    • /
    • pp.75-88
    • /
    • 1997
  • Tabu search (TS) has been successfully applied for solving many complex combinatorial optimization problems in the areas of operations research and production control. However, TS is for single-objective problems in its present form. In this article, a TS-based heuristic is developed to determine Pareto-efficient solutions to a multi-objective combinatorial optimization problem. The developed algorithm is then applied to the discrete optimal design problem in statistics to demonstrate its usefulness.

  • PDF

A Survey: SDP, its Duality, Complexity and Applications (SDP의 개관: 쌍대성, 계산복잡성 및 응용)

  • 류춘호;명영수;홍성필
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.2
    • /
    • pp.13-46
    • /
    • 2001
  • SDP (Semidefinite Programming), as a sort of “cone-LP”, optimizes a linear function over the intersection of an affine space and a cone that has the origin as its apex. SDP, however, has been developed in the process of searching for better solution methods for NP-hard combinatorial optimization problems. We surveyed the basic theories necessary to understand SDP researches. First, We examined SDP duality, comparing it to LP duality, which is essential for the interior point method, Second, we showed that SDP can be optimized from an interior solution in polynomial time with a desired error limit. finally, we summarized several research papers that showed SDP can improve solution methods for some combinatorial optimization problems, and explained why SDP has become one of the most important research topics in optimization. We tried to integrate SDP theories. relatively diverse and complicated. to survey research papers with our own perspective, and thus to help researcher to pursue their SDP researches in depth.

  • PDF

An Optimization Model for Resolving Circular Shareholdings of Korean Large Business Groups (대규모 기업집단의 순환출자 해소를 위한 최적화 모형)

  • Park, Chan-Kyoo;Kim, Dae-Lyong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.73-89
    • /
    • 2009
  • Circular shareholdings among three companies are formed when company A owns stock in company B, company B owns stock in company C, and company C owns stock in company A. Since circular shareholdings among large family-controlled firms are used to give the controlling shareholder greater control or more opportunities to expropriate minority investors, the government has encouraged large business groups to gradually remove their circular shareholdings. In this paper, we propose a combinatorial optimization model that can answer the question, which equity investments among complicated investment relationships of one large business group should be removed to resolve its circular shareholdings. To the best knowledge of the authors, our research is the first one that has approached the circular shareholding problem in respect of management science. The proposed combinatorial optimization model are formulated into integer programming problem and applied to some Korean major business groups.

Numerical analysis of quantization-based optimization

  • Jinwuk Seok;Chang Sik Cho
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.367-378
    • /
    • 2024
  • We propose a number-theory-based quantized mathematical optimization scheme for various NP-hard and similar problems. Conventional global optimization schemes, such as simulated and quantum annealing, assume stochastic properties that require multiple attempts. Although our quantization-based optimization proposal also depends on stochastic features (i.e., the white-noise hypothesis), it provides a more reliable optimization performance. Our numerical analysis equates quantization-based optimization to quantum annealing, and its quantization property effectively provides global optimization by decreasing the measure of the level sets associated with the objective function. Consequently, the proposed combinatorial optimization method allows the removal of the acceptance probability used in conventional heuristic algorithms to provide a more effective optimization. Numerical experiments show that the proposed algorithm determines the global optimum in less operational time than conventional schemes.