• Title/Summary/Keyword: Combinatorial Optimization Methods

Search Result 50, Processing Time 0.026 seconds

Optimal sensor placement for structural health monitoring based on deep reinforcement learning

  • Xianghao Meng;Haoyu Zhang;Kailiang Jia;Hui Li;Yong Huang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.247-257
    • /
    • 2023
  • In structural health monitoring of large-scale structures, optimal sensor placement plays an important role because of the high cost of sensors and their supporting instruments, as well as the burden of data transmission and storage. In this study, a vibration sensor placement algorithm based on deep reinforcement learning (DRL) is proposed, which can effectively solve non-convex, high-dimensional, and discrete combinatorial sensor placement optimization problems. An objective function is constructed to estimate the quality of a specific vibration sensor placement scheme according to the modal assurance criterion (MAC). Using this objective function, a DRL-based algorithm is presented to determine the optimal vibration sensor placement scheme. Subsequently, we transform the sensor optimal placement process into a Markov decision process and employ a DRL-based optimization algorithm to maximize the objective function for optimal sensor placement. To illustrate the applicability of the proposed method, two examples are presented: a 10-story braced frame and a sea-crossing bridge model. A comparison study is also performed with a genetic algorithm and particle swarm algorithm. The proposed DRL-based algorithm can effectively solve the discrete combinatorial optimization problem for vibration sensor placements and can produce superior performance compared with the other two existing methods.

Optimal Design of Contour-Lined Plots for Land Consolidation Planning in Sloping Areas (경사지 경지정리지구의 등고선 구획 최적설계)

  • 강민구;박승우;강문성;김상민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.83-95
    • /
    • 2003
  • In this study, a new concept in a paddy consolidation project is introduced in that curved parallel terracing with contour-lined layout is adopted in sloping areas instead of conventional rectangular terracing. The contoured layout reduces earth-moving considerably compared to rectangular methods in consolidation projects. The objective of the paper is to develop a combinatorial optimization model using the network theory for the design of contour-lined plots which minimizes the volume of earth moving. The results showed that as the length of short side of plot is longer or the land slope is steeper, the volume of earth moving for land leveling increases. The developed optimization model is applied for three consolidated districts and the resulting optimal earth moving is compared with the volume of earth from the conventional method. The shorter is the minimum length of short side of a polt with increases the number of plots, the less is the volume of earth. As the minimum length of short side is 20 m for efficient field works by farm machinery, the volume of earth moving of optimal plot is less by 21.0∼27.1 % than that of the conventional consolidated plots.

The Optimal Project Combination for Urban Regeneration New Deal Projects (도시재생 뉴딜사업의 최적 사업지구 선정조합에 관한 연구)

  • Park, Jae Ho;Geem, Zong Woo;Yu, Jung Suk
    • Korea Real Estate Review
    • /
    • v.28 no.1
    • /
    • pp.23-37
    • /
    • 2018
  • The genetic algorithm (GA) and branch and bound (B&B) methods are the useful methods of searching the optimal project combination (combinatorial optimization) to maximize the project effect considering the budget constraint and the balance of regional development with regard to the Urban Regeneration New Deal policy, the core real estate policy of the Moon Jae-in government. The Ministry of Land, Infrastructure, and Transport (MOLIT) will choose 13 central-city-area-type projects, 2 economic-base-type projects, and 10 public-company-proposal-type projects among the numerous projects from 16 local governments while each government can apply only 4 projects, respectively, for the 2017 Urban Regeneration New Deal project. If MOLIT selects only those projects with a project effect maximization purpose, there will be unselected regions, which will harm the balance of regional development. For this reason, an optimization model is proposed herein, and a combinatorial optimization method using the GA and B&B methods should be sought to satisfy the various constraints with the object function. Going forward, it is expected that both these methods will present rational decision-making criteria if the central government allocates a special-purpose-limited budget to many local governments.

Multi Agents-Multi Tasks Assignment Problem using Hybrid Cross-Entropy Algorithm (혼합 교차-엔트로피 알고리즘을 활용한 다수 에이전트-다수 작업 할당 문제)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.4
    • /
    • pp.37-45
    • /
    • 2022
  • In this paper, a multi agent-multi task assignment problem, which is a representative problem of combinatorial optimization, is presented. The objective of the problem is to determine the coordinated agent-task assignment that maximizes the sum of the achievement rates of each task. The achievement rate is represented as a concave down increasing function according to the number of agents assigned to the task. The problem is expressed as an NP-hard problem with a non-linear objective function. In this paper, to solve the assignment problem, we propose a hybrid cross-entropy algorithm as an effective and efficient solution methodology. In fact, the general cross-entropy algorithm might have drawbacks (e.g., slow update of parameters and premature convergence) according to problem situations. Compared to the general cross-entropy algorithm, the proposed method is designed to be less likely to have the two drawbacks. We show that the performances of the proposed methods are better than those of the general cross-entropy algorithm through numerical experiments.

A Hybrid Genetic Ant Colony Optimization Algorithm with an Embedded Cloud Model for Continuous Optimization

  • Wang, Peng;Bai, Jiyun;Meng, Jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1169-1182
    • /
    • 2020
  • The ant colony optimization (ACO) algorithm is a classical metaheuristic optimization algorithm. However, the conventional ACO was liable to trap in the local minimum and has an inherent slow rate of convergence. In this work, we propose a novel combinatorial ACO algorithm (CG-ACO) to alleviate these limitations. The genetic algorithm and the cloud model were embedded into the ACO to find better initial solutions and the optimal parameters. In the experiment section, we compared CG-ACO with the state-of-the-art methods and discussed the parameter stability of CG-ACO. The experiment results showed that the CG-ACO achieved better performance than ACOR, simple genetic algorithm (SGA), CQPSO and CAFSA and was more likely to reach the global optimal solution.

An Enhanced Genetic Algorithm for Global and Local Optimization Search (전역 및 국소 최적화탐색을 위한 향상된 유전 알고리듬의 제안)

  • Kim, Young-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1008-1015
    • /
    • 2002
  • This paper proposes a combinatorial method to compute the global and local solutions of optimization problem. The present hybrid algorithm is the synthesis of a genetic algorithm and a local concentrate search algorithm (simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution. In addition, this algorithm can find both the global and local optimum solutions. An optimization result is presented to demonstrate that the proposed approach successfully focuses on the advantages of global and local searches. Three numerical examples are also presented in this paper to compare with conventional methods.

APPLICATION OF SIMULATED ANNEALING FOR THE MATHEMATICAL MODELLING OF IMMUNE SYSTEMS

  • Lee, Kwon-Soon;Lee, Young-Jin;Chung, Hyeng-Hwan
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.129-132
    • /
    • 1992
  • Cellular kinetics formulate the basis of tumor immune system dynamics which may be synthesized mathematically as cascades of bilinear systems which are connected by nonlinear dynamical terms. In this manner, a foundation for the control of syngeneic tumors is presented. We have analyzed the mechanisms of controlling the infiltration of lymphocytes into tumor tissues. Simulated anneal ins, a general-purpose method of multivariate optimization, is applied to combinatorial optimization, which is to find the minimum of a given function depending on many parameters. We compare the results of the different methods including the global optimization algorithm, known as simutated annealing.

  • PDF

A Hueristic Algorithm for Nonidentical Parallel Machines Scheduling (동일하지 않는 병렬기계 일정계획을 위한 휴리스틱 방법)

  • 전태웅;박해천
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.59
    • /
    • pp.37-42
    • /
    • 2000
  • The parallel machines scheduling problems is one of the combinatorial optimization problems that often occurs in the real world. This problem is classified into two cases, one of which is the case which processing time are identical and the other, nonidentical. Not so much researches have been made on the case that nonidentical parallel machines scheduling problem. This study proposes Tabu Search methods for solving parallel machines scheduling problems related to due dates: minimizing mean tardiness, minimizing the number of tardy jobs, minimizing the maximum tardiness.

  • PDF

혼합 유전알고리즘을 이용한 비선형 최적화문제의 효율적 해법

  • 윤영수;이상용
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.1 no.1
    • /
    • pp.63-85
    • /
    • 1996
  • This paper describes the applications of genetic algorithm to nonlinear constrained optimization problems. Genetic algorithms are combinatorial in nature, and therefore are computationally suitable for treating continuous and idstrete integer design variables. For several problems , the conventional genetic algorithms are ill-defined , which comes from the application of penalty function , encoding and decoding methods, fitness scaling, and premature convergence of solution. Thus, we develope a hybrid genetic algorithm to resolve these problems and present two examples to demonstrate the effectiveness of the methodology developed in this paper.

  • PDF

Optimization of 3G Mobile Network Design Using a Hybrid Search Strategy

  • Wu Yufei;Pierre Samuel
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.471-477
    • /
    • 2005
  • This paper proposes an efficient constraint-based optimization model for the design of 3G mobile networks, such as universal mobile telecommunications system (UMTS). The model concerns about finding a set of sites for locating radio network controllers (RNCs) from a set of pre-defined candidate sites, and at the same time optimally assigning node Bs to the selected RNCs. All these choices must satisfy a set of constraints and optimize an objective function. This problem is NP-hard and consequently cannot be practically solved by exact methods for real size networks. Thus, this paper proposes a hybrid search strategy for tackling this complex and combinatorial optimization problem. The proposed hybrid search strategy is composed of three phases: A constraint satisfaction method with an embedded problem-specific goal which guides the search for a good initial solution, an optimization phase using local search algorithms, such as tabu algorithm, and a post­optimization phase to improve solutions from the second phase by using a constraint optimization procedure. Computational results show that the proposed search strategy and the model are highly efficient. Optimal solutions are always obtained for small or medium sized problems. For large sized problems, the final results are on average within $5.77\%$ to $7.48\%$ of the lower bounds.