• Title/Summary/Keyword: Comb-Line Bandpass Filter

Search Result 9, Processing Time 0.029 seconds

A Study on The Design of Planer Comb-Line Bandpass Filter Using Equivalent Circuits of Asymmetrical Coupled Line (비대칭 결합선로 등가회로를 사용한 Comb-line 구조의 대역통과 여파기 설계)

  • Yun, Jae-Ho;Park, Jun-Seok;Kim, Hyeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.368-374
    • /
    • 2002
  • In this paper, we introduce a procedure to obtain a equivalent circuit of comb-line band pass filter. By employing equivalent circuits of each asymmetrical coupled line. we composed the full equivalent circuit of comb-line bandpass filter and derived simple design equations for extracting each line's impedance. To show the validity of design equations, we simulated and fabricated a planar type comb-line bandpass filter, which has center frequency 1.8㎓, band-width 50㎒ and four resonators. The resulting filter is very compact, have broad stop band with the second pass band centered at four times the center frequency of the first pass band. The experimental results show exact performances of design specification.

A Study on the New Configuration of Dielectric Bandpass Filter Using Comb-Line Design Theory (Comb-Line 설계 이론을 이용한 세라믹 유전체 대역통과 필터의 새로운 구현에 관한 연구)

  • 오창헌;임상규안철
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.621-624
    • /
    • 1998
  • This paper presents a new configuration of dielectric bandpass filter using the comb-line filter design theory. This filter is composed of a homogeneous dielectric monoblock $(\varepsilonr=35.5)$ with two metal post and a dielectric sheet $(\varepsilonr=9.8).$ In this structure, the RF leakage is suppressed without other shield housing. For the fabricated filter, insertion loss value in the passband region was 0.9dB(Max.) and return loss value was 19dB(Min). Also, this filter has a attenuation pole in the stopband.

  • PDF

Design of Asymmetric Parallel Coupled-line Array using Finite Element Analysis (유한요소해석을 이용한 배열구조의 평면형 비대칭 결합선로 설계)

  • 윤재호;박준석;김형석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.521-527
    • /
    • 2002
  • In this paper, we introduce a procedure to find design parameter for array coupled lines using 2-D finite element analysis. To extract design parameters using FE calculation, we set up several design conditions. In order to show the validity of our approach, we designed, simulated and fabricated a comb-line bandpass filter.

A Design of Varactor-Tuned Combline Bandpass Filter Using Coupling Varactor Diode

  • Kim Byung-Wook;Back Hyung-Il;Yun Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.80-86
    • /
    • 2005
  • In this paper, a novel varactor-tuned combline bandpass filter is presented. The coupling varactor diode between line elements is introduced to control the passband bandwidth so that the passband bandwidth can be maintained almost constant within the tuning range. The equivalent circuit and design equations are derived, and the optimum design is discussed. A 1.7 GHz, two-pole bandpass filter with a bandwidth of $4.5\%$ was constructed. The absolute passband bandwidth was maintained almost constant within more than 0.4 octave tuning range.

Compact Tri-Band Bandpass Filter Using Dual-Mode Stepped-Impedance Resonators and Parallel Coupled-Lines (이중 모드 SIR과 평행 결합선로를 이용한 소형 3중-대역 대역통과 필터 설계)

  • Gyuje Sung;Young Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2023
  • This paper proposes a tri-band bandpass filter using dual-mode stepped-impedance resonators (SIRs) with parallel coupled structures. The proposed filter adopts U-shaped SIRs with open stubs and parallel coupled lines (PCLs) that have inter-digital and comb-line shorted ends. Two U-shaped SIRs with open stubs build the first and third passband, and the central PCL resonators build the second passband. Five resonators and coupling structures are theoretically analyzed to derive the scattering parameters of the proposed filter. A novel tri-band bandpass filter is designed and fabricated using the induced scattering parameters. The measured result of the fabricated tri-band bandpass filter shows a good agreement with the simulated one.

Compact Dual-Band Bandpass Filter Using U-Shaped Stepped-Impedance Resonators with Parallel Coupled Structures

  • Sung, Gyuje
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.73-77
    • /
    • 2018
  • This paper proposes a dual-band bandpass filter using stepped-impedance resonators (SIRs) with parallel coupled structures. The proposed filter adopts U-shaped SIRs with parallel coupled lines (PCLs) that have interdigital and comb-line shorted ends. The central PCLs build an upper passband and a transmission zero, and the two U-shaped SIRs build a lower passband. Four resonators and coupling structures are theoretically analyzed to derive its scattering parameters. A novel dual-band bandpass filter is designed and fabricated using the induced scattering characteristics. The measured results show that the fabricated dual-band bandpass filter has an insertion loss of less than 1.02 dB in the lower band of 2.45 GHz and of 3.01 dB in the upper band of 3.42 GHz, and a band-to-band isolation of more than 40 dB, from 3.14 to 3.2 GHz.

Equivalent Circuit Design of 2.4 GHz Band LTCC Bandpass Filters Using Multilayer Inter-Digital Resonators (적층 Inter-Digital 공진기를 이용한 2.4 GHz 대역 LTCC 대역통과 여파기의 등가회로 설계)

  • Sung Gyu-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.78-83
    • /
    • 2005
  • LTCC filters have been widely used to wireless terminals. They generally adopt the multilayer structure. Some of multilayer LTCC filters are made of symmetrical parallel-coupled lines and anti-symmetrical parallel-coupled lines to reduce the length of resonators. The equivalent circuit of parallel-coupled lines was analyzed and applied to bandpass filters using multilayer parallel-coupled line resonators. The three-pole bandpass filter with the center frequency of 2.45 GHz is designed by using the proposed equivalent circuit and the measured results have good agreement with the design results.

A Design of Balun-BPF for 2.45GHz Band of LTCC structure (LTCC Chip 형태의 2.45GHz 대역 Balun-BPF의 설계)

  • Jung, Eul-Young;Choi, Kyoung;Hwang, Hee-Yong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.133-136
    • /
    • 2005
  • This paper presents a LTCC Balun-BPF, which is a BPF(bandpass filter) with a Balun in a single LTCC chip for the direct interface with a MIC chip having balanced inputs. The physical dimension of the designed Balun-BPE is $2.4{\times}2.0{\times}0.88m^3$ and the used dielectric constant ${\varepsilon}_r$ is 36. A Balun of three-lines structure with striplines and a BPF of comb-line structure was combined into the Balun-BPF. The simulated result shows 4.8dB of insertion loss, $178{\sim}179$ degree of the phase imbalance, 14dB of the return

  • PDF

A Parasitic Elements Extraction of the Distributed Elements and an Application of the BPF Using the Short-Open Calibration Method (단락 개방 Calibration 방법을 이용한 분포 정수 소자의 기생 소자 추출 및 대역 통과 필터에의 응용)

  • Kim, Yu-Seon;Nam, Hun;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.115-123
    • /
    • 2009
  • In this paper, we extract the parasitic elements of the transmission line with the defected ground structure(DGS) and the short-circuited comb line section using the Short-Open Calibration(SOC). The scattering matrixes of short, open and the distributed elements in microstrip line are measured by full electro-magnetic(EM) simulator and Vector Network Analyser(VNA). The electro-magnetic effects of the proposed structures are considered by the II and T equivalent circuits with frequency independent elements, and the relations between the measured scattering parameters and the elements in the circuits are shown by performing 2 port network analysis. Moreover, to design the 2.4 GHz bandpass filter with second order butterworth prototype, the proposed methods are applied. As results, the measured $S_{11}$ and $S_{21}$ indicate -20 dB and -1.3 dB at center frequency, and these are shown within 5 % error compare to the predicted results at $0.5{\sim}5\;GHz$.