• 제목/요약/키워드: Color-based tracking

검색결과 255건 처리시간 0.03초

A Tracking-by-Detection System for Pedestrian Tracking Using Deep Learning Technique and Color Information

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.1017-1028
    • /
    • 2019
  • Pedestrian tracking is a particular object tracking problem and an important component in various vision-based applications, such as autonomous cars and surveillance systems. Following several years of development, pedestrian tracking in videos remains challenging, owing to the diversity of object appearances and surrounding environments. In this research, we proposed a tracking-by-detection system for pedestrian tracking, which incorporates a convolutional neural network (CNN) and color information. Pedestrians in video frames are localized using a CNN-based algorithm, and then detected pedestrians are assigned to their corresponding tracklets based on similarities between color distributions. The experimental results show that our system is able to overcome various difficulties to produce highly accurate tracking results.

Object Modeling with Color Arrangement for Region-Based Tracking

  • Kim, Dae-Hwan;Jung, Seung-Won;Suryanto, Suryanto;Lee, Seung-Jun;Kim, Hyo-Kak;Ko, Sung-Jea
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.399-409
    • /
    • 2012
  • In this paper, we propose a new color histogram model for object tracking. The proposed model incorporates the color arrangement of the target that encodes the relative spatial distribution of the colors inside the object. Using the color arrangement, we can determine which color bin is more reliable for tracking. Based on the proposed color histogram model, we derive a mean shift framework using a modified Bhattacharyya distance. In addition, we present a method of updating an object scale and a target model to cope with changes in the target appearance. Unlike conventional mean shift based methods, our algorithm produces satisfactory results even when the object being tracked shares similar colors with the background.

CONTINUOUS PERSON TRACKING ACROSS MULTIPLE ACTIVE CAMERAS USING SHAPE AND COLOR CUES

  • Bumrungkiat, N.;Aramvith, S.;Chalidabhongse, T.H.
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.136-141
    • /
    • 2009
  • This paper proposed a framework for handover method in continuously tracking a person of interest across cooperative pan-tilt-zoom (PTZ) cameras. The algorithm here is based on a robust non-parametric technique for climbing density gradients to find the peak of probability distributions called the mean shift algorithm. Most tracking algorithms use only one cue (such as color). The color features are not always discriminative enough for target localization because illumination or viewpoints tend to change. Moreover the background may be of a color similar to that of the target. In our proposed system, the continuous person tracking across cooperative PTZ cameras by mean shift tracking that using color and shape histogram to be feature distributions. Color and shape distributions of interested person are used to register the target person across cameras. For the first camera, we select interested person for tracking using skin color, cloth color and boundary of body. To handover tracking process between two cameras, the second camera receives color and shape cues of a target person from the first camera and using linear color calibration to help with handover process. Our experimental results demonstrate color and shape feature in mean shift algorithm is capable for continuously and accurately track the target person across cameras.

  • PDF

Human Tracking using Multiple-Camera-Based Global Color Model in Intelligent Space

  • Jin Tae-Seok;Hashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.39-46
    • /
    • 2006
  • We propose an global color model based method for tracking motions of multiple human using a networked multiple-camera system in intelligent space as a human-robot coexistent system. An intelligent space is a space where many intelligent devices, such as computers and sensors(color CCD cameras for example), are distributed. Human beings can be a part of intelligent space as well. One of the main goals of intelligent space is to assist humans and to do different services for them. In order to be capable of doing that, intelligent space must be able to do different human related tasks. One of them is to identify and track multiple objects seamlessly. In the environment where many camera modules are distributed on network, it is important to identify object in order to track it, because different cameras may be needed as object moves throughout the space and intelligent space should determine the appropriate one. This paper describes appearance based unknown object tracking with the distributed vision system in intelligent space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

색상변화를 갖는 객체추적 알고리즘 (An Algorithm for Color Object Tracking)

  • 황인택;최광남
    • 한국멀티미디어학회논문지
    • /
    • 제10권7호
    • /
    • pp.827-837
    • /
    • 2007
  • 기존의 색상 기반의 Mean Shift 알고리즘을 이용한 객체추적 알고리즘은 초기 색상 정보가 사라질 경우 정확한 객체추적을 수행할 수 없다. 본 논문은 객체의 색상이 변할 때 색상 정보를 변경하여 정확히 추적하는 알고리즘을 제안한다. 제안 알고리즘은 현재의 위치를 중심으로 다음 객체 위치에 해당하는 밀도가 가장 높은 위치를 Mean Shift알고리즘으로 구하고, 바꿔 색상 정보를 변경하는 반복적인 기법을 사용한다. 이를 통해 처음 설정한 객체의 색상이 바뀌거나 사라지더라도 정확한 객체추적을 할 수 있게 되었다. 본 논문에서는 제안 알고리즘을 구현하고, 실험 결과로 성능을 입증한다.

  • PDF

Object Tracking with Radical Change of Color Distribution Using EM algorithm

  • 황인택;최광남
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.388-390
    • /
    • 2006
  • This paper presents an object tracking with radical change of color. Conventional Mean Shift do not provide appropriate result when major color distribution disappear. Our tracking approach is based on Mean Shift as basic tracking method. However we propose tracking algorithm that shows good results for an object of radical variation. The key idea is iterative update previous color information of an object that shows different color by using EM algorithm. As experiment results, we show that our proposed algorithm is an effective approach in tracking for a real object include an object having radical change of color.

  • PDF

컬러 히스토그램과 CNN 모델을 이용한 객체 추적 (Object Tracking using Color Histogram and CNN Model)

  • 박성준;백중환
    • 한국항행학회논문지
    • /
    • 제23권1호
    • /
    • pp.77-83
    • /
    • 2019
  • 본 논문에서는 컬러 히스토그램과 CNN 모델을 이용한 객체 추적 기법 알고리즘을 제안한다. CNN (convolutional neural network) 모델기반 객체 추적 알고리즘인 GOTURN (generic object tracking using regression network)의 정확도를 높이기 위해 컬러 히스토그램 기반 mean-shift 추적 알고리즘을 합성하였다. 두 알고리즘을 SVM (support vector machine)을 통해 분류하여 추적 정확도가 더 높은 알고리즘을 선택하도록 설계하였다. Mean-shift 추적 알고리즘은 객체 추적에 실패할 때 경계 박스가 큰 범위로 움직이는 경향이 있어 경계 박스의 이동거리에 제한을 두어 정확도를 향상시켰다. 또한 영상 평균 밝기, 히스토그램 유사도를 고려하여 두 알고리즘의 추적 시작 위치를 초기화하여 성능을 높였다. 결과적으로 기존 GOTURN 알고리즘보다 본 논문에서 제안한 알고리즘이 전체적으로 정확도가 1.6% 향상되었다.

Multiple Face Segmentation and Tracking Based on Robust Hausdorff Distance Matching

  • Park, Chang-Woo;Kim, Young-Ouk;Sung, Ha-Gyeong
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.632-635
    • /
    • 2003
  • This paper describes a system fur tracking multiple faces in an input video sequence using facial convex hull based facial segmentation and robust hausdorff distance. The algorithm adapts skin color reference map in YCbCr color space and hair color reference map in RGB color space for classifying face region. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, this algorithm computes displacement of the point set between frames using a robust hausdorff distance and the best possible displacement is selected. Finally, the initial face model is updated using the displacement. We provide an example to illustrate the proposed tracking algorithm, which efficiently tracks rotating and zooming faces as well as existing multiple faces in video sequences obtained from CCD camera.

  • PDF

Multiple Face Segmentation and Tracking Based on Robust Hausdorff Distance Matching

  • Park, Chang-Woo;Kim, Young-Ouk;Sung, Ha-Gyeong;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.87-92
    • /
    • 2003
  • This paper describes a system for tracking multiple faces in an input video sequence using facial convex hull based facial segmentation and robust hausdorff distance. The algorithm adapts skin color reference map in YCbCr color space and hair color reference map in RGB color space for classifying face region. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, this algorithm computes displacement of the point set between frames using a robust hausdorff distance and the best possible displacement is selected. Finally, the initial face model is updated using the displacement. We provide an example to illustrate the proposed tracking algorithm, which efficiently tracks rotating and zooming faces as well as existing multiple faces in video sequences obtained from CCD camera.

서베일런스 네트워크에서 적응적 색상 모델을 기초로 한 실시간 객체 추적 알고리즘 (Real-Time Object Tracking Algorithm based on Adaptive Color Model in Surveillance Networks)

  • 강성관;이정현
    • 디지털융복합연구
    • /
    • 제13권9호
    • /
    • pp.183-189
    • /
    • 2015
  • 본 논문은 서베일런스 네트워크에서 영상의 색상 정보를 이용한 객체 추적 방법을 제안한다. 이 방법은 적응적인 색상 모델을 이용한 객체 검출을 수행한다. 객체 윤곽선 검출은 객체 인식과 같은 응용에서 중요한 역할을 수행한다. 실험 결과는 색상과 크기에서 객체의 다양한 변화가 있을 때에도 성공적인 객체 검출을 증명한다. 실시간으로 객체를 검출하는 응용 분야에서 대량의 영상 데이터를 전송할 때 색상 분포의 형태를 찾아내는 것이 가능하다. 객체의 특정 색상 정보는 입력 영상에서 동적으로 변화하는 색상에서 자주 수정되어진다. 그래서, 이 알고리즘은 해당 추적 영역 안에서 객체의 추적 영역 정보를 탐지하고 그 객체의 움직임만을 추적한다. 실험을 통해, 본 논문은 어떤 이상적인 상황하에서 제안하는 객체 추적 알고리즘이 다른 방법보다 더 강인한 면이 있다는 것을 보여준다.