• Title/Summary/Keyword: Color- histogram

Search Result 500, Processing Time 0.022 seconds

Green Chroma Keying for Robot Performances in Public Places (공공장소에서 로봇 공연용 그린 크로마키 합성)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.7-13
    • /
    • 2017
  • Robot performances in public places are conducted for the purpose of promoting robot technology and inducing interest in events, exhibitions, and streets instead of dedicated stages. This paper extracts robot images in real time from a robot operation in front of a green chroma key cloth, and synthesizes them on various stage images. A simple and robust method for extracting a foreground robot from a chroma key background without a user's preset is proposed. After increasing the color difference between the background and the foreground, this method automatically removes the background based on the histogram of the difference information, thereby eliminating the need for a user's preset. The simulation shows 98.8% of foreground extraction rate and experimental results demonstrate that the robots can effectively be extracted from the background.

Emotion Recognition Based on Facial Expression by using Context-Sensitive Bayesian Classifier (상황에 민감한 베이지안 분류기를 이용한 얼굴 표정 기반의 감정 인식)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.653-662
    • /
    • 2006
  • In ubiquitous computing that is to build computing environments to provide proper services according to user's context, human being's emotion recognition based on facial expression is used as essential means of HCI in order to make man-machine interaction more efficient and to do user's context-awareness. This paper addresses a problem of rigidly basic emotion recognition in context-sensitive facial expressions through a new Bayesian classifier. The task for emotion recognition of facial expressions consists of two steps, where the extraction step of facial feature is based on a color-histogram method and the classification step employs a new Bayesian teaming algorithm in performing efficient training and test. New context-sensitive Bayesian learning algorithm of EADF(Extended Assumed-Density Filtering) is proposed to recognize more exact emotions as it utilizes different classifier complexities for different contexts. Experimental results show an expression classification accuracy of over 91% on the test database and achieve the error rate of 10.6% by modeling facial expression as hidden context.

A shot change detection algorithm based on frame segmentation and object movement (프레임 블록화와 객체의 이동을 이용한 샷 전환 탐지 알고리즘)

  • Kim, Seung-Hyun;Hwang, Doosung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.21-29
    • /
    • 2015
  • This paper proposes a shot change detection algorithm by using frame segmentation and the object changes among moving blocks. In order to detect the rapid moving changes of objects between two consecutive frames, the moving blocks on the diagonal are defined, and their histograms are calculated. When a block of the current frame is compared to the moving blocks of the next frame, the block histograms are used and the threshold of a shot change detection is automatically adjusted by Otsu's threshold method. The proposed algorithm was tested for the various types of color or gray videos such as films, dramas, animations, and video tapes in National Archives of Korea. The experimental results showed that the proposed algorithm could enhance the detection rate when compared to the studied methods that use brightness, histogram, or segmentation.

The Shot Change Detection Using a Hybrid Clustering (하이브리드 클러스터링을 이용한 샷 전환 검출)

  • Lee, Ji-Hyun;Kang, Oh-Hyung;Na, Do-Won;Lee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.635-638
    • /
    • 2005
  • The purpose of video segmentation is to segment video sequence into shots where each shot represents a sequence of frames having the same contents, and then select key frames from each shot for indexing. There are two types of shot changes, abrupt and gradual. The major problem of shot change detection lies on the difficulty of specifying the correct threshold, which determines the performance of shot change detection. As to the clustering approach, the right number of clusters is hard to be found. Different clustering may lead to completely different results. In this thesis, we propose a video segmentation method using a color-X$^2$ intensity histogram-based fuzzy c-means clustering algorithm.

  • PDF

Real Time Lip Reading System Implementation in Embedded Environment (임베디드 환경에서의 실시간 립리딩 시스템 구현)

  • Kim, Young-Un;Kang, Sun-Kyung;Jung, Sung-Tae
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.227-232
    • /
    • 2010
  • This paper proposes the real time lip reading method in the embedded environment. The embedded environment has the limited sources to use compared to existing PC environment, so it is hard to drive the lip reading system with existing PC environment in the embedded environment in real time. To solve the problem, this paper suggests detection methods of lip region, feature extraction of lips, and awareness methods of phonetic words suitable to the embedded environment. First, it detects the face region by using face color information to find out the accurate lip region and then detects the exact lip region by finding the position of both eyes from the detected face region and using the geometric relations. To detect strong features of lighting variables by the changing surroundings, histogram matching, lip folding, and RASTA filter were applied, and the properties extracted by using the principal component analysis(PCA) were used for recognition. The result of the test has shown the processing speed between 1.15 and 2.35 sec. according to vocalizations in the embedded environment of CPU 806Mhz, RAM 128MB specifications and obtained 77% of recognition as 139 among 180 words were recognized.

A Study on Localization of Text in Natural Scene Images (자연 영상에서의 정확한 문자 검출에 관한 연구)

  • Choi, Mi-Young;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.77-84
    • /
    • 2008
  • This paper proposes a new approach to eliminate the reflectance component for the localization of text in natural scene images. Natural scene images normally have an illumination component as well as a reflectance component. It is well known that a reflectance component usually obstructs the task of detecting and recognizing objects like texts in the scene, since it blurs out an overall image. We have developed an approach that efficiently removes reflectance components while Preserving illumination components. We decided whether an input image hits Normal or Polarized for determining the light environment, using the histogram which consisted of a red component. In the normal image, we acquired the text region without additional processing. Otherwise we removed light reflecting from the object using homomorphic filtering in the polarized image. And then this decided the each text region based on the color merging technique and the Saliency Map. Finally, we localized text region on these two candidate regions.

  • PDF

Application of object detection algorithm for psychological analysis of children's drawing (아동 그림 심리분석을 위한 인공지능 기반 객체 탐지 알고리즘 응용)

  • Yim, Jiyeon;Lee, Seong-Oak;Kim, Kyoung-Pyo;Yu, Yonggyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • Children's drawings are widely used in the diagnosis of children's psychology as a means of expressing inner feelings. This paper proposes a children's drawings-based object detection algorithm applicable to children's psychology analysis. First, the sketch area from the picture was extracted and the data labeling process was also performed. Then, we trained and evaluated a Faster R-CNN based object detection model using the labeled datasets. Based on the detection results, information about the drawing's area, position, or color histogram is calculated to analyze primitive information about the drawings quickly and easily. The results of this paper show that Artificial Intelligence-based object detection algorithms were helpful in terms of psychological analysis using children's drawings.

Real-Time LDR to HDR Conversion Hardware Implementation using Luminance Distribution (영상의 휘도 분포를 이용한 LDR 영상의 실시간 HDR 변환 하드웨어 구현)

  • Lee, Seung-min;Kang, Bong-soon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.901-906
    • /
    • 2018
  • Due to the development of display technologies for images, the resolution and quality of images are increasing day by day. In accordance with the development of the display technology, researches have been actively conducted on technologies for converting and displaying existing images to higher resolution and quality. Since the results of theses studies are included in the image signal processor, hardware implementation is indispensable. In this paper, we propose a real-time HDR(High Dynamic Range) conversion hardware implementation of LDR(Low Dynamic Range) image using luminance distribution. The proposed method extracts the features of the image using the histogram of the luminance distribution, and extends the luminance and color based on the extracted features. In addition, when the proposed method is designed by hardware IP(Intellectual Property) and its performance is verified, 4K DCI(Digital Cinema Image) can be handled at a rate of 30fps at 265.46MHz.

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.

Proposal of a method of using HSV histogram data learning to provide additional information in object recognition (객체 인식의 추가정보제공을 위한 HSV 히스토그램 데이터 학습 활용 방법 제안)

  • Choi, Donggyu;Wang, Tae-su;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.6-8
    • /
    • 2022
  • Many systems that use images through object recognition using deep learning have provided various solutions beyond the existing methods. Many studies have proven its usability, and the actual control system shows the possibility of using it to make people's work more convenient. Many studies have proven its usability, and actual control systems make human tasks more convenient and show possible. However, with hardware-intensive performance, the development of models is facing some limitations, and the ease with the use and additional utilization of many unupdated models is falling. In this paper, we propose how to increase utilization and accuracy by providing additional information on the emotional regions of colors and objects by utilizing learning and weights from HSV color histograms of local image data recognized after conventional stereotyped object recognition results.

  • PDF