• 제목/요약/키워드: Color- histogram

검색결과 500건 처리시간 0.025초

중복된 칼라 히스토그램과 공간 정보를 이용한 내용 기반 화상 검색 시스템 설계 및 구현 (LDesign and implementation of a content-based image retrieval system using the duplicated color histogram and spatial information)

  • 김철원;최기호
    • 한국통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.889-898
    • /
    • 1997
  • Most general content-based image retrieval techniques use color and texture as retrieval indices. Spatial information is not used to color histogram and color pair based on color retrieval techniques. This paper proposes the selection of a set of representative in the duplicated color histogram, the analysis of spatial information of the selected colors and the image retrieval process based on the duplicated color histogram and spatial information. Two color historgrams for background and object are used in order to decide on color selection in the duplicated color histogram. Spatial information is obtained using a maximum entropy discretization. A retrieval process applies to duplicated color histogram and spatial to retrieve input images and relevant images. As the result of experiment of the image retrieval, improved color his togram and spatial information method hs increased the retrieval effectiveness more the color histogram method and color pair method.

  • PDF

A New Method for Color Feature Representation of Color Image in Content-Based Image Retrieval Projection Maps

  • 김원일
    • 정보통신설비학회논문지
    • /
    • 제9권2호
    • /
    • pp.73-79
    • /
    • 2010
  • The most popular technique for image retrieval in a heterogeneous collection of color images is the comparison of images based on their color histogram. The color histogram describes the distribution of colors in the color space of a color image. In the most image retrieval systems, the color histogram is used to compute similarities between the query image and all the images in a database. But, small changes in the resolution, scaling, and illumination may cause important modifications of the color histogram, and so two color images may be considered to be very different from each other even though they have completely related semantics. A new method of color feature representation based on the 3-dimensional RGB color map is proposed to improve the defects of the color histogram. The proposed method is based on the three 2-dimensional projection map evaluated by projecting the RGB color space on the RG, GB, and BR surfaces. The experimental results reveal that the proposed is less sensitive to small changes in the scene and that achieve higher retrieval performances than the traditional color histogram.

  • PDF

A New Method for Color Feature Representation of Color Image in Content-Based Image Retrieval - 2D Projection Maps

  • Ha, Seok-Wun
    • Journal of information and communication convergence engineering
    • /
    • 제2권2호
    • /
    • pp.123-127
    • /
    • 2004
  • The most popular technique for image retrieval in a heterogeneous collection of color images is the comparison of images based on their color histogram. The color histogram describes the distribution of colors in the color space of a color image. In the most image retrieval systems, the color histogram is used to compute similarities between the query image and all the images in a database. But, small changes in the resolution, scaling, and illumination may cause important modifications of the color histogram, and so two color images may be considered to be very different from each other even though they have completely related semantics. A new method of color feature representation based on the 3-dimensional RGB color map is proposed to improve the defects of the color histogram. The proposed method is based on the three 2-dimensional projection map evaluated by projecting the RGB color space on the RG, GB, and BR surfaces. The experimental results reveal that the proposed is less sensitive to small changes in the scene and that achieve higher retrieval performances than the traditional color histogram.

컬러 동시발생 히스토그램의 피라미드 매칭에 의한 물체 인식 (Object Recognition by Pyramid Matching of Color Cooccurrence Histogram)

  • 방희범;이상훈;서일홍;박명관;김성훈;홍석규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.304-306
    • /
    • 2007
  • Methods of Object recognition from camera image are to compare features of color. edge or pattern with model in a general way. SIFT(scale-invariant feature transform) has good performance but that has high complexity of computation. Using simple color histogram has low complexity. but low performance. In this paper we represent a model as a color cooccurrence histogram. and we improve performance using pyramid matching. The color cooccurrence histogram keeps track of the number of pairs of certain colored pixels that occur at certain separation distances in image space. The color cooccurrence histogram adds geometric information to the normal color histogram. We suggest object recognition by pyramid matching of color cooccurrence histogram.

  • PDF

영역의 컬러특징과 적응적 컬러 히스토그램 빈 매칭 방법을 이용한 내용기반 영상검색 (Content-Based Image Retrieval using Color Feature of Region and Adaptive Color Histogram Bin Matching Method)

  • 박정만;유기형;장세영;한득수;곽훈성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.364-366
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. They could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram Bin Matching(AHB) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have Quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that AHB's can give superior results to color histograms for image retrieval.

  • PDF

Content-Based Image Retrieval Using Adaptive Color Histogram

  • Yoo Gi-Hyoung;Park Jung-Man;You Kang-Soo;Yoo Seung-Sun;Kwak Hoon-Sung
    • 한국통신학회논문지
    • /
    • 제30권9C호
    • /
    • pp.949-954
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. Dey could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram(ACH) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that ACH's can give superior results to color histograms for image retrieval.

Retrieval of Identical Clothing Images Based on Non-Static Color Histogram Analysis

  • ;;김구진
    • 방송공학회논문지
    • /
    • 제14권4호
    • /
    • pp.397-408
    • /
    • 2009
  • In this paper, we present a non-static color histogram method to retrieve clothing images that are similar to a query clothing. Given clothing area, our method automatically extracts major colors by using the octree-based quantization approach[16]. Then, a color palette that is composed of the major colors is generated. The feature of each clothing, which can be either a query or a database clothing image, is represented as a color histogram based on its color palette. We define the match color bins between two possibly different color palettes, and unify the color palettes by merging or deleting some color bins if necessary. The similarity between two histograms is measured by using the weighted Euclidean distance between the match color bins, where the weight is derived from the frequency of each bin. We compare our method with previous histogram matching methods through experiments. Compared to HSV cumulative histogram-based approach, our method improves the retrieval precision by 13.7 % with less number of color bins.

컬러 히스토그램과 엔트로피를 이용한 동영상 컷 검출 (Cut Detection of Video Data Using Color Histogram and Entropy)

  • 송현석;안강식;안명석;조석제
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.265-268
    • /
    • 2001
  • 내용에 기반한 동영상 검색에서, 대표 프레임을 자주 이용하는데, 이를 위해 우선적으로 동영상의 장면변화를 검출하는 기술이 필요하다. 일반적으로 컬러 히스토그램 비교방법이 많이 쓰이나, 급격한 조명변화에 민감하고 컬러 히스토그램 분포가 비슷한 부분의 장면전환을 놓칠 수 있다는 단점이 있다. 본 논문에서는 컬러 히스토그램 비교방법과 엔트로피를 복합적으로 이용하여 조명변화에 의해 장면전환이 잘못 검출되는 것을 막을 수 있다. 실험을 통해 제안한 방법은 컬러 히스토그램 비교방법보다 조명변화에 보다 감격함을 확인할 수 있었다.

  • PDF

고속 웨이블렛 히스토그램과 색상정보를 이용한 영상검색 (Image Retrieval using Fast Wavelet Histogram and Color Information)

  • 김주현;이배호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.194-197
    • /
    • 2000
  • Wavelet transform used for content-based image retrieval has good performance in texture image. Image features for content-based image retrieval are color, texture, and shape. In this paper, we use color feature extracted from HSI color space known as most similar vision system to human vision system and texture feature extracted from wavelet histogram which has multiresolution property. Proposed method is compared with HSI color histogram method and wavelet histogram method. It is shown better performance.

  • PDF

칼라 특징을 이용한 내용기반 화상검색시스템의 설계 및 구현 (The Design an Implementation of Content-based Image Retrieval System Using Color Features)

  • 정원일;박정찬;최기호
    • 전자공학회논문지B
    • /
    • 제33B권6호
    • /
    • pp.111-118
    • /
    • 1996
  • A content-based image retrieval system is designed and implemetned using the color featurees which are histogram intersection and color pairs. The preprocessor for the image retrieval manage linearly the existing HSI(hue, saturation, saturation, intensity). Hue and intensity histogram thresholding for each color attribute is performed to split the chromatic and achromatic regions respectively. Grouping te indexes produced by the histogram intersection is used to save the retrieval times. Each image is divided into the cells of 32$\times$32 pixels, and color pairs are used to represent the query during retrievals. The recall/precision of histogram intersection is 0.621/0.663 and recall/precision of color pairs is 0.438/0.536. And recall/precision of proposed method is 0.765/0.775/. It is shown that the proposed method using histogram intersection and color pairs improves the retrieval rates.

  • PDF