• 제목/요약/키워드: Color variance

검색결과 207건 처리시간 0.026초

색 변화 특징을 이용한 자연이미지에서의 장면 텍스트 추출 (Scene Text Extraction in Natural Images Using Color Variance Feature)

  • 송영자;최영우
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1835-1838
    • /
    • 2003
  • 이미지에 포함되어 있는 텍스트들은 이미지의 내용을 함축적이며 구체적으로 표현하는 정보를 갖고 있다. 본 논문에서는 이러한 정보를 정확히 추출하기 위해서 색 변화 특징을 이용한 텍스트 영역 추출 방법을 제안한다. 관찰에 의하면 이미지 내의 텍스트들은 주변 배경과의 색 변화가 존재하며, 이러한 색 변화를 3차원 RGB공간에서 표현한다면, 명도이미지에서의 밝기 변화에서 표현하기 어려운 영역들을 강조시킬 수 있으며, 조명 변화에도 민감하지 않은 결과를 만들어 낼 수 있다. 색 변화 정도는 3차원 RBG 공간에서의 색 분산(Variance)으로 측정한다 처리 과정으로서 우선 수평 및 수직 방향의 분산 이미지를 구하는데, 텍스트 영역은 두 방향의 분산 값이 모두 높은 특징이 있다. 다음으로 두 결과의 논리적 AND 연산을 수행하여 불필요한 잡영들을 제거한 후 연결요소를 분석, 검증하여 영역을 최종 확정한다. 다양한 종류의 자연이미지로 제안한 방법을 검증한 결과 밝기 변화 또는 색 연속성 특징들을 이용한 방법에서 찾기 어려운 텍스트 영역들을 찾을 수 있는 것을 확인할 수 있었다.

  • PDF

컬러 패턴의 분해와 가설검정을 이용한 컬러 조작 영역 검출 (Forged Color Region Detection Using Color Pattern Decomposition and Hypothesis Test)

  • 서준륭;엄일규
    • 전자공학회논문지
    • /
    • 제52권7호
    • /
    • pp.77-85
    • /
    • 2015
  • 본 논문에서는 컬러 패턴의 분해와 가설검정 기법을 이용하여 영상에서 조작된 컬러의 영역을 검출하는 새로운 방법을 제시한다. 디모자이킹으로 보간된 화소는 원 화소보다 적은 분산을 가진다는 것에 착안하여, 통계적 검정을 이용하여 분산의 불일치성을 판단하는 방법을 사용한다. 이를 위해, 컬러 패턴을 각각 디모자이킹 패턴에 따라 분해하는 방법을 도입하여 분산을 계산한다. 또한 보간된 화소와 원 화소의 분산의 차이를 크게 하기 위하여 고역통과 필터링을 적용한다. 실험 결과를 통하여 제안 방법이 컬러 조작 영역을 찾는데 매우 유효하며 기존 방법과 비교하여 우수한 검출 성능을 보이는 것을 확인 할 수 있었다.

색 분산 특징을 이용한 텍스트 추출에서의 손실된 분산 복원 (Variance Recovery in Text Detection using Color Variance Feature)

  • 최영우;조은숙
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.73-82
    • /
    • 2009
  • 본 논문은 자연이미지에 포함된 텍스트 영역을 찾기 위한 방법으로서 기존에 제안한 색 분산 특징을 이용한 방법에서 분산이 제대로 추출되지 않는 문자 획들에 대한 복원 방법을 제안한다. 이전의 색 분산 특징을 이용한 추출방법에서는 고정된 크기의 수평 및 수직 분간 추출 윈도우를 사용함으로서 문자 획이 두껍거나 긴 경우에는 색 분산이 제대로 추출되지 않는 단점이 있었다. 따라서 본 논문에서는 미 추출된 색 분산을 연결요소 외곽사각형의 기하학적인 정보와 경험적인(Heuristic) 지식을 함께 이용하여 복원하는 방법을 제안한다. 제안한 방법은 다양한 종류의 디지털 카메라와 휴대폰 카메라를 이용해서 취득한 문서 유형의 이미지와 간판, 거리 표지판 등의 자연이미지를 사용하여 테스트 하였으며, 특히 큰 글자를 포함하는 자연이미지에 대해서도 텍스트 추출의 정확성이 향상된 것을 확인할 수 있었다.

카메라 획득 영상에서의 색 분산 및 개선된 K-means 색 병합을 이용한 텍스트 영역 추출 및 이진화 (Text Detection and Binarization using Color Variance and an Improved K-means Color Clustering in Camera-captured Images)

  • 송영자;최영우
    • 정보처리학회논문지B
    • /
    • 제13B권3호
    • /
    • pp.205-214
    • /
    • 2006
  • 이미지에 포함된 텍스트는 이미지의 내용을 함축적이고 구체적으로 표현하는 정보로서 이러한 정보를 실시간에 찾아내서 인식한다면 다양한 응용에 활용할 수 있다. 본 논문에서는 카메라로 취득한 다양한 종류의 이미지로부터 텍스트를 추출하는 방법과 추출된 영역에서 텍스트를 분리하는 방법을 새롭게 제안한다. 텍스트 영역 추출을 위해서 RGB 색 공간에서 색 분산을 특징으로 제안하며, 텍스트 영역 분리를 위해서 RGB 색 공간에서 개선된 K-means 병합을 제안한다. 실험은 디지털 카메라와 핸드폰 카메라로 취득한 다양한 종류의 문서유형 이미지와 실내외의 일반적인 자연이미지를 사용하였으며, ICDAR 콘테스트[1] 이미지의 일부도 사용하였다.

컬러 분산 에너지를 이용한 확장 스네이크 알고리즘 (Extended Snake Algorithm Using Color Variance Energy)

  • 이승태;한영준;한헌수
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.83-92
    • /
    • 2009
  • 본 논문에서는 컬러 영상에서 관심객체를 분할하기 위해 컬러 분산 에너지를 이용하는 확장 스네이크 알고리즘을 제안한다. 기존 스네이크 알고리즘은 영상 내에 존재하는 다양한 에너지들을 정의하여 영상을 관심 객체와 배경으로 분할한다. 스네이크의 성능은 구성하는 에너지의 특성에 따라 주로 좌우된다. 능동 윤곽선 모델인 일반적인 스네이크 알고리즘은 적용이 쉽고 분석이 용이한 영상의 밝기 정보를 주요 에너지로 사용한다. 그러나 영상밝기의 미분연산이나 에지검출과 관련된 에너지는 잡음에 민감하고 배경이 복잡해지면 성능이 좋지 않은 단점을 가지고 있다. 제안하는 알고리즘은 분할 영역의 컬러 분산을 스네이크의 영상 에너지에 추가함으로써 복잡한 배경에서도 관심객체를 효율적으로 분할한다. 제안하는 확장 스네이크 알고리즘의 성능을 단순한 배경과 복잡한 배경을 갖는 컬러 영상에서 관심객체를 분할하는 다양한 실험을 통해서 입증하였다. 그 결과 정확도 면에서 약 12.42 %의 향상된 성능을 보였다.

분산맵을 이용한 웹 이미지 텍스트 영역 추출 (Text Region Segmentation from Web Images using Variance Maps)

  • 정인숙;오일석
    • 한국콘텐츠학회논문지
    • /
    • 제9권9호
    • /
    • pp.68-79
    • /
    • 2009
  • 분산맵은 텍스트 영역이 주변과의 색상 혹은 밝기 변화가 심하다는 특징을 이용하는 방법으로 특히 잦은 포맷 변환에 의하여 해상도가 낮거나 일정하지 않은 웹 이미지의 텍스트 영역을 추출하는 데 적용할 수 있다. 그러나 이전의 분산맵을 적용한 방법들은 입력 영상 전역에 고정된 마스크를 한 번만 적용하는 광역 분산맵을 사용하므로 텍스트 크기가 매우 작거나 큰 경우, 획의 색상에 gradation효과가 있는 경우, 각도, 위치, 색상 등이 복잡한 경우 텍스트 추출 성능이 안정 적이지 못하다. 본 논문은 2단계 분산맵을 사용하여 Web 이미지에서 텍스트 영역을 안정적으로 추출하는 방법을 제안한다. 제안된 방법은 광역 및 지역 분산맵이 각 단계에서 적용되며 서로 계층적 관계를 가진다. 1단계는 텍스트 영역 추출 재현율을 높일 수 있도록, 충분히 큰 글자 혹은 작은 글자도 추출할 수 있는 일정한 마스크 크기를 가진 광역의 수직 및 수평 색 분산맵을 적용하여 유사 텍스트 영역을 추출한다. 2단계에서는 1단계의 각 연결요소영역에 새로운 마스크 크기를 가진 명암 분산맵을 적용하여 최종적인 텍스트 영역을 추출한다. 2단계 분산맵 적용에 의하여 1단계에서 구한 유사 텍스트 영역에 남아 있는 배경 부분이 많이 사라지게 되어 추출 정확률이 높아진다. 제안한 방법을 400개의 Web 이미지에 적용한 결과 배경이 복잡해도 비교적 안정적으로 텍스트 영역을 추출하는 것을 확인할 수 있었다.

엔트로피에 기반한 영상분할을 이용한 영상검색 (Image Retrieval Using Entropy-Based Image Segmentation)

  • 장동식;유헌우;강호증
    • 제어로봇시스템학회논문지
    • /
    • 제8권4호
    • /
    • pp.333-337
    • /
    • 2002
  • A content-based image retrieval method using color, texture, and shape features is proposed in this paper. A region segmentation technique using PIM(Picture Information Measure) entropy is used for similarity indexing. For segmentation, a color image is first transformed to a gray image and it is divided into n$\times$n non-overlapping blocks. Entropy using PIM is obtained from each block. Adequate variance to perform good segmentation of images in the database is obtained heuristically. As variance increases up to some bound, objects within the image can be easily segmented from the background. Therefore, variance is a good indication for adequate image segmentation. For high variance image, the image is segmented into two regions-high and low entropy regions. In high entropy region, hue-saturation-intensity and canny edge histograms are used for image similarity calculation. For image having lower variance is well represented by global texture information. Experiments show that the proposed method displayed similar images at the average of 4th rank for top-10 retrieval case.

의복에서의 조형미와 유행 평가연구 (A Study on Evaluation of Aesthetic Expression and Fashion in the Clothing)

  • 오현정;이은영
    • 한국의류학회지
    • /
    • 제14권4호
    • /
    • pp.245-251
    • /
    • 1990
  • The purposes of the study were to efplain the independent influences of Asthetic Expression and Fashion on aesthetic evaluation in the clothing, to examine which in more important aesthetic components such as line/style, color, textile and detail in aesthetic evaluation in the clothing. Data were obtained from 221 female students living in Seoul area by eight photo-graphs of clothed bodies and a questionnaire. The data were analysied by Pearson's correlation, Analysis of valiables, scheffe-test and Regression analysis. The results of the study were as follows; 1. In the aesthetic evaluation of clothing, the $59.30\%$ of the total variance was explained by Aesthetic Expression, the $20.91\%$ of the total variance was explained by Fashion and $59.68\%$ of the total variance were explained by Aesthetic Expression and Fashion. More important variable of aesthetic evaluation was found to be an Aesthetic Expression. 2. Among aesthetic components such as line/style, color, textile and detail in aesthetic evaluation of the clothing, such general aspects as color and line/style were perceived at first and then specific ones like textile and detail.

  • PDF

다중 비디오카메라에서 색 정보를 이용한 보행자 추적 (The Walkers Tracking Algorithm using Color Informations on Multi-Video Camera)

  • 신창훈;이주신
    • 한국정보통신학회논문지
    • /
    • 제8권5호
    • /
    • pp.1080-1088
    • /
    • 2004
  • 본 논문은 조도, 형태, 배경의 변화에 강인한 다중 비디오카메라에서 색 정보를 이용한 보행자 추적에 대하여 제안한다. 제안된 방법은 비디오카메라로부터 입력되는 영상의 색조만을 이용하여 배경영상과 물체가 존재하는 영상에서 차영상 기법과 가산투영 기법을 사용하여 이동물체를 검출한다. 검출된 이동물체 영역의 색조는 0도부터 360도 사이에서 15도씩 24단계로 분할된다. 검출된 이동물체 영역의 색조 분포도를 구한 후, 가장 높은 분포를 갖는 3개의 색조 레벨과 3개의 색조 레벨 사이의 차를 이동물체의 특징파라미터로 사용하였다. 제안된 방법의 유용성을 증명하기 위하여 조도와 형태의 변화가 발생한 보행자 영상과 조도, 형태, 배경의 변화가 발생한 보행자 영상을 이용하여 보행자를 감시한 결과 카메라에서 검출된 특정사람의 색조 분포 레벨과 색조 레벨 사이의 차는 2레벨 이하로 유지함을 보였고, 제안된 특징 파라미터로 특정사람이 자동 추적감시 됨을 확인하였다.

다채널 이미지의 회전각 추정 (Rotation Angle Estimation of Multichannel Images)

  • 이봉규;양요한
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권6호
    • /
    • pp.267-271
    • /
    • 2002
  • The Hotelling transform is based on statistical properties of an image. The principal uses of this transform are in data compression. The basic concept of the Hotelling transform is that the choice of basis vectors pointing the direction of maximum variance of the data. This property can be used for rotation normalization. Many objects of interest in pattern recognition applications can be easily standardized by performing a rotation normalization that aligns the coordinate axes with the axes of maximum variance of the pixels in the object. However, this transform can not be used to rotation normalization of color images directly. In this paper, we propose a new method for rotation normalization of color images based on the Hotelling transform. The Hotelling transform is performed to calculate basis vectors of each channel. Then the summation of vectors of all channels are processed. Rotation normalization is performed using the result of summation of vectors. Experimental results showed the proposed method can be used for rotation normalization of color images effectively.