• Title/Summary/Keyword: Color image sensor

Search Result 223, Processing Time 0.024 seconds

Image Sensor Module for Detecting Spatial Color Temperature in Indoor Environment (실내 환경의 공간 색온도 검출을 위한 이미지센서 모듈)

  • Moon, Seong-Jae;Kim, Young-Woo;Lim, Yeong-Seog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.191-196
    • /
    • 2021
  • In this paper, we implemented an image sensor module possible of detecting color temperature in an indoor environment. The color temperature information in the video information acquired by the image sensor was matched with a color difference illuminometer to produce an LUT. An algorithm was developed so that color temperature information according to the received RGB values can be automatically calculated. As a result of measuring the color temperature with an image sensor indoors, an accurate result of less than 5.91% was obtained compared to the reference value. It was confirmed that the uniformity of 23.5% or more was excellent compared to the color temperature measurement result using a color sensor.

CMOS 영상센서에 대한 영상 신호 전처리기의 구현

  • 정영식;장영조
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.15-18
    • /
    • 2001
  • Recently, CMOS image sensor is rapidly used as an image capture device such as mobile phone or notebook PC. Because of poor quality of image by CMOS image sensor, ISP is essential step to improve image quality. In this paper, we implemented and simulated ISP algorithm for real time moving picture of CMOS image sensor. Especial Iy, we concentrated on color interpolation, which extracts three color component from uncompleted color information. Several algorithms for color interpolation are implemented and analyzed to acquire a good quality of picture. Finally, we proposed an improved algorithm and confirmed the effectiveness by experimental simulation results.

  • PDF

Fabrication of Infrared Filters for Three-Dimensional CMOS Image Sensor Applications

  • Lee, Myung Bok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.341-344
    • /
    • 2017
  • Infrared (IR) filters were developed to implement integrated three-dimensional (3D) image sensors that are capable of obtaining both color image and depth information at the same time. The combination of light filters applicable to the 3D image sensor is composed of a modified IR cut filter mounted on the objective lens module and on-chip filters such as IR pass filters and color filters. The IR cut filters were fabricated by inorganic $SiO_2/TiO_2$ multilayered thin-film deposition using RF magnetron sputtering. On-chip IR pass filters were synthetized by dissolving various pigments and dyes in organic solvents and by subsequent patterning with photolithography. The fabrication process of the filters is fairly compatible with the complementary metal oxide semiconductor (CMOS) process. Thus, the IR cut filter and IR pass filter combined with conventional color filters are considered successfully applicable to 3D image sensors.

A Color Interpolation Method for Improved Edge Sensing (에지 선별을 개선한 컬러 보간법)

  • Cho, Yang-Ki;Kim, Hi-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1216-1223
    • /
    • 2006
  • In many imaging devices, a single image sensor is used, which is covered by a color filter array to filter out the specific color components from light. Since an image acquired from this image sensors have a color components at each pixel, it is needed to be reconstructed to a perfect image. In this paper, a new color interpolation method for the imaging devices having a single image sensor is proposed. The proposed method improves a edge sensing function to obtain satisfactory results in edges of an image, md presents a new inter-channel correlation for improving interpolation performance in smooth region. We have compared our method with several exiting methods, and our experimental results have proved better interpolation performance in comparing with the other results.

A Pseudo Multiple Capture CMOS Image Sensor with RWB Color Filter Array

  • Park, Ju-Seop;Choe, Kun-Il;Cheon, Ji-Min;Han, Gun-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.270-274
    • /
    • 2006
  • A color filter array (CFA) helps a single electrical image sensor to recognize color images. The Red-Green-Blue (RGB) Bayer CFA is commonly used, but the amount of the light which arrives at the photodiode is attenuated with this CFA. Red-White-Blue (RWB) CFA increases the amount of the light which arrives at photodiode by using White (W) pixels instead of Green (G) pixels. However, white pixels are saturated earlier than red and blue pixels. The pseudo multiple capture scheme and the corresponding RWB CFA were proposed to overcome the early saturation problem of W pixels. The prototype CMOS image sensor (CIS) was fabricated with $0.35-{\mu}m$ CMOS process. The proposed CIS solves the early saturation problem of W pixels and increases the dynamic range.

Pixel FPN Characteristics with Color-Filter and Microlens in Small Pixel Generation of CMOS Image Sensor (Color-Filter 및 Microlens를 포함한 CMOS Image Sensor의 Optical Stack 구조 별 Pixel FPN 특성 및 원인 분류)

  • Choi, Woonil;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.857-861
    • /
    • 2012
  • FPN (fixed-pattern-noise) mainly comes from the device or pattern mismatches in pixel and color filter, pixel photodiode leakage in CMOS image sensor. In this paper, optical stack module related pixel FPN was investigated and the classification of pixel FPN contribution with the individual optical module process was presented. The methodology and procedure would be helpful in reducing the greater pixel FPN and distinguishing the complex FPN sources with respect to various noise factors.

A New Demosaicking Algorithm for Honeycomb CFA CCD by Utilizing Color Filter Characteristics (Honeycomb CFA 구조를 갖는 CCD 이미지센서의 필터특성을 고려한 디모자이킹 알고리즘의 개발 및 검증)

  • Seo, Joo-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.62-70
    • /
    • 2011
  • Nowadays image sensor is an essential component in many multimedia devices, and it is covered by a color filter array to filter out specific color components at each pixel. We need a certain algorithm to combine those color components reconstructed a full color image from incomplete color samples output from an image sensor, which is called a demosaicking process. Most existing demosaicking algorithms are developed for ideal image sensors, but they do not work well for the practical cases because of dissimilar characteristics of each sensor. In this paper, we propose a new demosaicking algorithm in which the color filter characteristics are fully utilized to generate a good image. To demonstrate significance of our algorithm, we used a commerically available sensor, CBN385B, which is a sort of Honeycomb-style CFA(Color Filter Array) CCD image sensor. As a performance metric of the algorithm, PSNR(Peak Signal to Noise Ratio) and RGB distribution of the output image are used. We first implemented our algorithm in C-language for simulation on various input images. As a result, we could obtain much enhanced images whose PSNR was improved by 4~8 dB compared to the commonly idealized approaches, and we also could remove the inclined red property which was an unique characteristics of the image sensor(CBN385B).Then we implemented it in hardware to overcome its problem of computational complexity which made it operate slow in software. The hardware was verified on Spartan-3E FPGA(Field Programable Gate Array) to give almost the same performance as software, but in much faster execution time. The total logic gate count is 45K, and it handles 25 image frmaes per second.

A Method for Quantitative Measurement of Lateral Flow Immunoassay Using Color Camera (컬러 카메라를 이용한 측면유동 면역 어세이 정량분석 방법)

  • Park, Jongwon
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Among semi-quantitative or fully quantitative lateral flow assay readers, an image sensor-based instrument has been widely used because of its simple setup, cheap sensor price, and compact equipment size. For all previous approaches, monochrome CCD or CMOS cameras were used for lateral flow assay imaging in which the overall intensities of all colors were taken into consideration to estimate the analyte content, although the analyte related color information is only limited to a narrow wavelength range. In the present work, we introduced a color CCD camera as a sensor and a color decomposition method to improve the sensitivity of the quantitative biosensor system which utilizes the lateral flow assay successfully. The proposed setup and image processing method were applied to achieve the quantification of imitatively dispensed particles on the surface of a porous membrane first, and the measurement result was then compared with that using a monochrome CCD. The compensation method was proposed in different illumination conditions. Eventually, the color decomposition method was introduced to the commercially available lateral flow immunochromatographic assay for the diagnosis of myocardial infarction. The measurement sensitivity utilizing the color image sensor is significantly improved since the slopes of the linear curve fit are enhanced from 0.0026 to 0.0040 and from 0.0802 to 0.1141 for myoglobin and creatine kinase (CK)-MB detection, respectively.

Demosaicking of Hexagonally-Structured Bayer Color Filter Array (육각형 구조의 베이어 컬러 필터 배열에 대한 디모자익킹)

  • Lee, Kyungme;Yoo, Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1434-1440
    • /
    • 2014
  • This paper describes a demosaicking method for hexagonally-structured color filter array. Demosaicking is essential to acquire color images using color filter array (CFA) in single sensor imaging. Thus, CFA patterns have been discussed in order to improve image quality in single sensor imaging after the Bayer pattern are introduced. Advancements in imaging sensor technology recently introduce a hexagonal CFA pattern. The hexagonal CFA can be considered to be a 45-degree rotational version of the Bayer pattern, thus demosaicking can be implemented by an existing method with backward and forward 45-degree rotations. However, this approach requires heavy computing power and memory in image sensing devices because of the image rotations. To overcome this problem, we proposes a demosaicking method for a hexagonal Bayer CFA without rotations. In addition, we introduce a weighting parameter in our demosaicking method to improve image quality and to unifying exiting method with our method. Experimental results indicate that the proposed method is superior to conventional methods in terms of PSNR. In addition, some optimized values for the weighting parameter are provided experimentally.

A Study on the Measurement of Spectral Response Characteristics of Color Image Sensor (칼라영상센서의 분광감도 측정에 관한 연구)

  • 박승옥;김홍석
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.266-273
    • /
    • 1995
  • Colors reproduced by color imaging system are affected by various physical factors. The spectral response of the color image sensor is one of the important factors. We developed a spectral response characteristics measurement system which is composed of optical part and color analyzing part. The data from the optical part was analyzed by the color analyzing part and spectral response characteristics of R, G, B three color sensors were obtained. Using this system, the spectral response characteristics of a CCD color camera was measured. From this result, color rendition and linearity of the camera could be analyzed. This measurement system is $.$considered to be very useful for the evaluation of color image sensor characteristics. stics.

  • PDF