• 제목/요약/키워드: Color clustering

검색결과 221건 처리시간 0.032초

Fish Injured Rate Measurement Using Color Image Segmentation Method Based on K-Means Clustering Algorithm and Otsu's Threshold Algorithm

  • Sheng, Dong-Bo;Kim, Sang-Bong;Nguyen, Trong-Hai;Kim, Dae-Hwan;Gao, Tian-Shui;Kim, Hak-Kyeong
    • 동력기계공학회지
    • /
    • 제20권4호
    • /
    • pp.32-37
    • /
    • 2016
  • This paper proposes two measurement methods for injured rate of fish surface using color image segmentation method based on K-means clustering algorithm and Otsu's threshold algorithm. To do this task, the following steps are done. Firstly, an RGB color image of the fish is obtained by the CCD color camera and then converted from RGB to HSI. Secondly, the S channel is extracted from HSI color space. Thirdly, by applying the K-means clustering algorithm to the HSI color space and applying the Otsu's threshold algorithm to the S channel of HSI color space, the binary images are obtained. Fourthly, morphological processes such as dilation and erosion, etc. are applied to the binary image. Fifthly, to count the number of pixels, the connected-component labeling is adopted and the defined injured rate is gotten by calculating the pixels on the labeled images. Finally, to compare the performances of the proposed two measurement methods based on the K-means clustering algorithm and the Otsu's threshold algorithm, the edge detection of the final binary image after morphological processing is done and matched with the gray image of the original RGB image obtained by CCD camera. The results show that the detected edge of injured part by the K-means clustering algorithm is more close to real injured edge than that by the Otsu' threshold algorithm.

퍼지 클러스터링을 이용한 칼라 영상 분할 (A study on the color image segmentation using the fuzzy Clustering)

  • 이재덕;엄경배
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 춘계종합학술대회
    • /
    • pp.109-112
    • /
    • 1999
  • Image segmentation is the critical first step in image information extraction for computer vision systems. Clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are divided from the fuzzy c-means(FCM) algorithm. The FCM algorithm uses fie probabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belonging or compatibility. Moreover, the FCM algorithm has considerable trouble under noisy environments in the feature space. Recently, a possibilistic approach to clustering(PCM) for solving above problems was proposed. In this paper, we used the PCM for color image segmentation. This approach differs from existing fuzzy clustering methods for color image segmentation in that the resulting partition of the data can be interpreted as a possibilistic partition. So, the problems in the FCM can be solved by the PCM. But, the clustering results by the PCM are not smoothly bounded, and they often have holes. The region growing was used as a postprocessing after smoothing the noise points in the pixel seeds. In our experiments, we illustrate that the PCM us reasonable than the FCM in noisy environments.

  • PDF

차감 및 중력 fuzzy C-means 클러스터링을 이용한 칼라 영상 분할에 관한 연구 (Segmentation of Color Image by Subtractive and Gravity Fuzzy C-means Clustering)

  • 진영근;김태균
    • 전기전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.93-100
    • /
    • 1997
  • 칼라 영상 분할의 한 방법으로 fuzzy C-means를 이용한 방법이 많이 연구되었으나, 이 방법은 클러스터의 개수가 정해져야 사용할 수 있는 방법이다. 분할해야 할 데이터가 많은 경우 예비 분할을 수행하여 예비 분할 되지 않는 데이터들에 대해서 상세 분할을 fuzzy C-means를 사용하여 분할 하나 예비 분할된 데이터의 클러스터 중심과 상세 분할로 만들어진 클러스터의 중심과는 연계성이 없어진다. 본 연구에서는 이것을 보완하기 위하여 차감 클러스터링을 사용하여 칼라 영상의 클러스터의 개수와 중심을 구한 후, 이것을 이용하여 영상을 예비 분할하고 중력을 가진 fuzzy C-means를 사용하여 분할되지 않은 나머지 부분과 클러스터의 중심을 최적화 시켜 분할하는 알고리듬을 제안한다. 제안된 방법의 정성적인 평가를 수행하여 본 논문에서 제시된 방법이 우수함을 보인다.

  • PDF

순차영역분할과 투영정보를 이용한 영상검색 (Image Retrieval Using Sequential Clustering and Projection Information)

  • 원혁준;김태선
    • 한국멀티미디어학회논문지
    • /
    • 제8권7호
    • /
    • pp.906-915
    • /
    • 2005
  • 본 논문에서는 영상검색 방법의 하나인 내용에 기반을 둔 검색방법으로 순차영역분할과 투영정보를 이용 한 영상검색 방법을 제안한다. 제안한 방법은 순차 분할된 영역의 색상평균값과 각 영역의 투영정보를 이용한 방법으로 영상의 공간정보와 컬러정보를 효과적으로 결합한 방법이다. 실험결과 제안한 방법이 기존의 방법 보다 검색효율이 $11.6\%$ 증가됨을 알 수 있었다. 또한 영상의 밝기변화, 회전, 카메라의 위치 및 확대, 축소에 따른 영상의 공간변화에도 매우 강인한 것으로 나타났다.

  • PDF

수학적 형태학에 기반한 클러스터링을 이용한 칼라영상의 영역화 (Color image segmentation using clustering based on mathematical morphology)

  • 박상호;윤일동;이상욱
    • 전자공학회논문지B
    • /
    • 제33B권8호
    • /
    • pp.68-80
    • /
    • 1996
  • In this paper, we propose a novel color image segmentation algorithm based on clustering in 3-dimensional color space employing the mathematical morphology. More specifically, since we take into account the topological properties such as the shape, connectivity and distribution of clusters in the clustering process, the number of clusters in the color cube, as well as their centers, can be easily obtained, without a priori knowledge on the input images. Intensive computer simulation has been performed and the results are discussed in this paper. The resutls of the simulation on the images in various color coordinates show that the segmentation is independent of the choice of color coordinates and the shape of clustes. Segmentation results of the vector quantizer are also presented for the comparison purpose.

  • PDF

슈퍼픽셀의 밀집도 및 텍스처정보를 이용한 DBSCAN기반 칼라영상분할 (A Method of Color Image Segmentation Based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) Using Compactness of Superpixels and Texture Information)

  • 이정환
    • 디지털산업정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.89-97
    • /
    • 2015
  • In this paper, a method of color image segmentation based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) using compactness of superpixels and texture information is presented. The DBSCAN algorithm can generate clusters in large data sets by looking at the local density of data samples, using only two input parameters which called minimum number of data and distance of neighborhood data. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. Each superpixel is consist of pixels with similar features such as luminance, color, textures etc. Superpixels are more efficient than pixels in case of large scale image processing. In this paper, superpixels are generated by SLIC(simple linear iterative clustering) as known popular. Superpixel characteristics are described by compactness, uniformity, boundary precision and recall. The compactness is important features to depict superpixel characteristics. Each superpixel is represented by Lab color spaces, compactness and texture information. DBSCAN clustering method applied to these feature spaces to segment a color image. To evaluate the performance of the proposed method, computer simulation is carried out to several outdoor images. The experimental results show that the proposed algorithm can provide good segmentation results on various images.

컬러 인접성과 클러스터링 기법을 이용한 객체 기반 영상 검색 (Object-Based Image Retrieval Using Color Adjacency and Clustering Method)

  • 이형진;박기태;문영식
    • 정보처리학회논문지B
    • /
    • 제12B권1호
    • /
    • pp.31-38
    • /
    • 2005
  • 본 논문은 컬러 인접성과 클러스터링 기법을 이용한 객체 기반 영상 검색 기법을 제안한다. 컬러 인접성이란 영상내의 서로 이웃한 영역에서 나타나는 컬러의 특징값을 말하고, 영상 데이터베이스로부터 사용자가 찾고자하는 영역과 유사한 후보 영역들을 우선 추출하는데 사용된다. 또한 클러스터링 기법은 후보 영역들 가운데 객체가 존재하는 영역만을 추출하는데 사용되고, 질의 영상과 데이터베이스 영상 사이의 유사도 측정을 위하여 히스토그램 인터섹션(histogram intersection) 방법이 사용된다. 제안하는 방법에서 사용되는 영상의 컬러쌍 정보는 객체의 이동, 회전 그리고 크기 변화에 강건하며, 실험을 통하여 제안하는 방법이 기존의 방법보다 우수함을 확인하였다.

칼라분류와 방향성 에지의 클러스터링에 의한 차선 검출 (Detection of Road Lane with Color Classification and Directional Edge Clustering)

  • 정차근
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.86-97
    • /
    • 2011
  • 본 논문에서는 칼라분류 및 방향성 에지정보의 클러스터링과 이들의 통합에 의한 새로운 도로영역 및 차선검출 알고리즘을 제안한다. 도로영역 및 차선을 하나의 인식대상 물체로 취급하고, 통계적 파라미터의 반복 최적화에 의한 칼라정보의 클러스터링을 수행해서 검출과 인식을 위한 초기정보로 사용한다. 다음으로, 칼라정보가 갖는 물체인식 의 한계를 개선하기 위해 에지정보를 검출하고, 관심영역(Region Of Interest for Lane Boundary(ROI-LB))의 추출과 ROI-LB 영역에서 방향성 에지정보의 검출과 클러스터링을 수행한다. 칼라분류 및 에지 클러스터링의 결과를 통합해, 이들 각각의 정보가 갖는 특징을 이용함으로서 도로환경에 적합한 도로영역 및 차선을 검출할 수 있도록 한다. 제안방법은 도로와 차선에 관한 파라미터릭 수학적 모델을 사용하지 않고 칼라 및 에지의 클러스터링 정보에 의한 non-parametric 방법으로 다양한 도로 환경에 유연한 대응이 가능한 장점을 갖는다. 본 제안방법의 유효성을 입증하기 위해 상이한 촬상조건 및 도로환경에서의 영상에 대한 실험결과를 제시한다.

K-means Clustering 기법과 신경망을 이용한 실시간 교통 표지판의 위치 인식 (Real-Time Traffic Sign Detection Using K-means Clustering and Neural Network)

  • 박정국;김경중
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.491-493
    • /
    • 2011
  • Traffic sign detection is the domain of automatic driver assistant systems. There are literatures for traffic sign detection using color information, however, color-based method contains ill-posed condition and to extract the region of interest is difficult. In our work, we propose a method for traffic sign detection using k-means clustering method, back-propagation neural network, and projection histogram features that yields the robustness for ill-posed condition. Using the color information of traffic signs enables k-means algorithm to cluster the region of interest for the detection efficiently. In each step of clustering, a cluster is verified by the neural network so that the cluster exactly represents the location of a traffic sign. Proposed method is practical, and yields robustness for the unexpected region of interest or for multiple detections.

Possibilistic C-mean 클러스터링과 영역 확장을 이용한 칼라 영상 분할 (Color image segmentation using the possibilistic C-mean clustering and region growing)

  • 엄경배;이준환
    • 전자공학회논문지S
    • /
    • 제34S권3호
    • /
    • pp.97-107
    • /
    • 1997
  • Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.

  • PDF