• Title/Summary/Keyword: Color Variance

Search Result 207, Processing Time 0.025 seconds

Scene Text Extraction in Natural Images Using Color Variance Feature (색 변화 특징을 이용한 자연이미지에서의 장면 텍스트 추출)

  • 송영자;최영우
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1835-1838
    • /
    • 2003
  • Texts in natural images contain significant and detailed informations about the images. Thus, to extract those texts correctly, we suggest a text extraction method using color variance feature. Generally, the texts in images have color variations with the backgrounds. Thus, if we express those variations in 3 dimensional RGB color space, we can emphasize the text regions that can be hard to be captured with a method using intensity variations in the gray-level images. We can even make robust extraction results with the images contaminated by light variations. The color variations are measured by color variance in this paper. First, horizontal and vertical variance images are obtained independently, and we can fine that the text regions have high values of the variances in both directions. Then, the two images are logically ANDed to remove the non-text components with only one directional high variance. We have applied the proposed method to the multiple kinds of the natural images, and we confirmed that the proposed feature can help to find the text regions that can he missed with the following features - intensity variations in the gray-level images and/or color continuity in the color images.

  • PDF

Forged Color Region Detection Using Color Pattern Decomposition and Hypothesis Test (컬러 패턴의 분해와 가설검정을 이용한 컬러 조작 영역 검출)

  • Seo, Jun Ryung;Eom, Il Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.77-85
    • /
    • 2015
  • In this paper, we present a new method that can detect forged color region using color pattern decomposition and hypothesis testing approach. On the basis of the fact that the variance of the interpolated pixel is smaller than that of the original pixel, we use a statistical test method to judge the statistical inconsistency of variance. For this, we calculate the variance adopting a color pattern decomposition according to the demosaicking pattern. In addition, we apply high-pass filtering to enlarge the difference between the variances of original and interpolated pixel. Through experimental simulations, we can see that our proposed method can effectively detect forged color regions and shows superior detection performance compared to the conventional method.

Variance Recovery in Text Detection using Color Variance Feature (색 분산 특징을 이용한 텍스트 추출에서의 손실된 분산 복원)

  • Choi, Yeong-Woo;Cho, Eun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.73-82
    • /
    • 2009
  • This paper proposes a variance recovery method for character strokes that can be missed in applying the previously proposed color variance approach in text detection of natural scene images. The previous method has a shortcoming of missing the color variance due to the fixed length of horizontal and vertical windows of variance detection when the character strokes are thick or long. Thus, this paper proposes a variance recovery method by using geometric information of bounding boxes of connected components and heuristic knowledge. We have tested the proposed method using various kinds of document-style and natural scene images such as billboards, signboards, etc captured by digital cameras and mobile-phone cameras. And we showed the improved text detection accuracy even in the images of containing large characters.

Text Detection and Binarization using Color Variance and an Improved K-means Color Clustering in Camera-captured Images (카메라 획득 영상에서의 색 분산 및 개선된 K-means 색 병합을 이용한 텍스트 영역 추출 및 이진화)

  • Song Young-Ja;Choi Yeong-Woo
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.205-214
    • /
    • 2006
  • Texts in images have significant and detailed information about the scenes, and if we can automatically detect and recognize those texts in real-time, it can be used in various applications. In this paper, we propose a new text detection method that can find texts from the various camera-captured images and propose a text segmentation method from the detected text regions. The detection method proposes color variance as a detection feature in RGB color space, and the segmentation method suggests an improved K-means color clustering in RGB color space. We have tested the proposed methods using various kinds of document style and natural scene images captured by digital cameras and mobile-phone camera, and we also tested the method with a portion of ICDAR[1] contest images.

Extended Snake Algorithm Using Color Variance Energy (컬러 분산 에너지를 이용한 확장 스네이크 알고리즘)

  • Lee, Seung-Tae;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.83-92
    • /
    • 2009
  • In this paper, an extended snake algorithm using color variance energy is proposed for segmenting an interest object in color image. General snake algorithm makes use of energy in image to segment images into a interesting area and background. There are many kinds of energy that can be used by the snake algorithm. The efficiency of the snake algorithm is depend on what kind of energy is used. A general snake algorithm based on active contour model uses the intensity value as an image energy that can be implemented and analyzed easily. But it is sensitive to noises because the image gradient uses a differential operator to get its image energy. And it is difficult for the general snake algorithm to be applied on the complex image background. Therefore, the proposed snake algorithm efficiently segment an interest object on the color image by adding a color variance of the segmented area to the image energy. This paper executed various experiments to segment an interest object on color images with simple or complex background for verifying the performance of the proposed extended snake algorithm. It shows improved accuracy performance about 12.42 %.

Text Region Segmentation from Web Images using Variance Maps (분산맵을 이용한 웹 이미지 텍스트 영역 추출)

  • Jung, In-Sook;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.68-79
    • /
    • 2009
  • A variance map can be used to detect and distinguish texts from background in images. However, previous variance maps work at one level and they suffer a limitation in dealing with varieties in text size, slant, orientation, translation, and color. We present a method for robustly segmenting text regions in complex color Web images using two-level variance maps. The two-level variance maps work hierarchically. The first level finds the approximate locations of text regions using global horizontal and vertical color variances with the specific mask sizes. The second level then segments each text region using intensity variance with a local mask size, which is determined adaptively. By the second process, backgrounds tend to disappear in each region and segmentation can be accurate. Highly promising experimental results have established the effectiveness of our approach.

Image Retrieval Using Entropy-Based Image Segmentation (엔트로피에 기반한 영상분할을 이용한 영상검색)

  • Jang, Dong-Sik;Yoo, Hun-Woo;Kang, Ho-Jueng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.333-337
    • /
    • 2002
  • A content-based image retrieval method using color, texture, and shape features is proposed in this paper. A region segmentation technique using PIM(Picture Information Measure) entropy is used for similarity indexing. For segmentation, a color image is first transformed to a gray image and it is divided into n$\times$n non-overlapping blocks. Entropy using PIM is obtained from each block. Adequate variance to perform good segmentation of images in the database is obtained heuristically. As variance increases up to some bound, objects within the image can be easily segmented from the background. Therefore, variance is a good indication for adequate image segmentation. For high variance image, the image is segmented into two regions-high and low entropy regions. In high entropy region, hue-saturation-intensity and canny edge histograms are used for image similarity calculation. For image having lower variance is well represented by global texture information. Experiments show that the proposed method displayed similar images at the average of 4th rank for top-10 retrieval case.

A Study on Evaluation of Aesthetic Expression and Fashion in the Clothing (의복에서의 조형미와 유행 평가연구)

  • Oh Hyun-Jung;Rhee Eun-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.14 no.4 s.36
    • /
    • pp.245-251
    • /
    • 1990
  • The purposes of the study were to efplain the independent influences of Asthetic Expression and Fashion on aesthetic evaluation in the clothing, to examine which in more important aesthetic components such as line/style, color, textile and detail in aesthetic evaluation in the clothing. Data were obtained from 221 female students living in Seoul area by eight photo-graphs of clothed bodies and a questionnaire. The data were analysied by Pearson's correlation, Analysis of valiables, scheffe-test and Regression analysis. The results of the study were as follows; 1. In the aesthetic evaluation of clothing, the $59.30\%$ of the total variance was explained by Aesthetic Expression, the $20.91\%$ of the total variance was explained by Fashion and $59.68\%$ of the total variance were explained by Aesthetic Expression and Fashion. More important variable of aesthetic evaluation was found to be an Aesthetic Expression. 2. Among aesthetic components such as line/style, color, textile and detail in aesthetic evaluation of the clothing, such general aspects as color and line/style were perceived at first and then specific ones like textile and detail.

  • PDF

The Walkers Tracking Algorithm using Color Informations on Multi-Video Camera (다중 비디오카메라에서 색 정보를 이용한 보행자 추적)

  • 신창훈;이주신
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1080-1088
    • /
    • 2004
  • In this paper, the interesting moving objects tracking algorithm using color information on Multi-Video camera against variance of intensity, shape and background is proposed. Moving objects are detected by using difference image method and integral projection method to background image and objects image only with hue area, after converting RGB color coordination of image which is input from multi-video camera into HSI color coordination. Hue information of the detected moving area are segmented to 24 levels from $0^{\circ}$ to $360^{\circ}$. It is used to the feature parameter of the moving objects that are three segmented hue levels with the highest distribution and difference among three segmented hue levels. To examine propriety of the proposed method, human images with variance of intensity and shape and human images with variance of intensity, shape and background are targeted for moving objects. As surveillance results of the interesting human, hue distribution level variation of the detected interesting human at each camera is under 2 level, and it is confirmed that the interesting human is tracked and surveilled by using feature parameters at cameras, automatically.

Rotation Angle Estimation of Multichannel Images (다채널 이미지의 회전각 추정)

  • Lee Bong-Kyu;Yang Yo-Han
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.267-271
    • /
    • 2002
  • The Hotelling transform is based on statistical properties of an image. The principal uses of this transform are in data compression. The basic concept of the Hotelling transform is that the choice of basis vectors pointing the direction of maximum variance of the data. This property can be used for rotation normalization. Many objects of interest in pattern recognition applications can be easily standardized by performing a rotation normalization that aligns the coordinate axes with the axes of maximum variance of the pixels in the object. However, this transform can not be used to rotation normalization of color images directly. In this paper, we propose a new method for rotation normalization of color images based on the Hotelling transform. The Hotelling transform is performed to calculate basis vectors of each channel. Then the summation of vectors of all channels are processed. Rotation normalization is performed using the result of summation of vectors. Experimental results showed the proposed method can be used for rotation normalization of color images effectively.