• Title/Summary/Keyword: Color Distance

Search Result 629, Processing Time 0.025 seconds

Color Image Segmentation Using Adaptive Quantization and Sequential Region-Merging Method (적응적 양자화와 순차적 병합 기법을 사용한 컬러 영상 분할)

  • Kwak, Nae-Joung;Kim, Young-Gil;Kwon, Dong-Jin;Ahn, Jae-Hyeong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.473-481
    • /
    • 2005
  • In this paper, we propose an image segmentation method preserving object's boundaries by using the number of quantized colors and merging regions using adaptive threshold values. First of all, the proposed method quantizes an original image by a vector quantization and the number of quantized colors is determined differently using PSNR each image. We obtain initial regions from the quantized image, merge initial regions in CIE Lab color space and RGB color space step by step and segment the image into semantic regions. In each merging step, we use color distance between adjacent regions as similarity-measure. Threshold values for region-merging are determined adaptively according to the global mean of the color difference between the original image and its split-regions and the mean of those variations. Also, if the segmented image of RGB color space doesn't split into semantic objects, we merge the image again in the CIE Lab color space as post-processing. Whether the post-processing is done is determined by using the color distance between initial regions of the image and the segmented image of RGB color space. Experiment results show that the proposed method splits an original image into main objects and boundaries of the segmented image are preserved. Also, the proposed method provides better results for objective measure than the conventional method.

  • PDF

Multi-level Vector Error Diffusion Based on Primary Color Selection Considering Lightness (휘도를 고려한 기준색 선택 기반의 다단계 벡터 오차 확산법)

  • 박태용;조양호;이명영;하영호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.77-85
    • /
    • 2004
  • This paper proposes a multi-level vector error diffusion method using 64 primary colors to improve color impulse artifact in bright region. Vector error diffusion method causes color impulse artifact in bright region because we only use the Euclidean distance measure in quantization process. In order to reduce this artifact, the proposed method divides input color into chromatic color and achromatic color according to chroma value. In the case of chromatic color, input color is classified into bright region, middle bright region, and dark region according to lightness value. N candidate primary color is organized using lightness difference between input vector and 60 chromatic primary color vector in the case of bright region. Then, primary color with minimum vector norm between input vector and N candidate primary color in addition to 4 achromatic primary colors is selected as output color. As a result of experiments, the proposed method showed visually pleasing halftone output.

Algorithm of Face Region Detection in the TV Color Background Image (TV컬러 배경영상에서 얼굴영역 검출 알고리즘)

  • Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.672-679
    • /
    • 2011
  • In this paper, detection algorithm of face region based on skin color of in the TV images is proposed. In the first, reference image is set to the sampled skin color, and then the extracted of face region is candidated using the Euclidean distance between the pixels of TV image. The eye image is detected by using the mean value and standard deviation of the component forming color difference between Y and C through the conversion of RGB color into CMY color model. Detecting the lips image is calculated by utilizing Q component through the conversion of RGB color model into YIQ color space. The detection of the face region is extracted using basis of knowledge by doing logical calculation of the eye image and lips image. To testify the proposed method, some experiments are performed using front color image down loaded from TV color image. Experimental results showed that face region can be detected in both case of the irrespective location & size of the human face.

Target Detection Based on Moment Invariants

  • Wang, Jiwu;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.677-680
    • /
    • 2003
  • Perceptual landmarks are an effective solution for a mobile robot realizing steady and reliable long distance navigation. But the prerequisite is those landmarks must be detected and recognized robustly at a higher speed under various lighting conditions. This made image processing more complicated so that its speed and reliability can not be both satisfied at the same time. Color based target detection technique can separate target color regions from non-target color regions in an image with a faster speed, and better results were obtained only under good lighting conditions. Moreover, in the case that there are other things with a target color, we have to consider other target features to tell apart the target from them. Such thing always happens when we detect a target with its single character. On the other hand, we can generally search for only one target for each time so that we can not make use of landmarks efficiently, especially when we want to make more landmarks work together. In this paper, by making use of the moment invariants of each landmark, we can not only search specified target from separated color region but also find multi-target at the same time if necessary. This made the finite landmarks carry on more functions. Because moment invariants were easily used with some low level image processing techniques, such as color based target detection and gradient runs based target detection etc, and moment invariants are more reliable features of each target, the ratio of target detection were improved. Some necessary experiments were carried on to verify its robustness and efficiency of this method.

  • PDF

Robot vision system for face recognition using fuzzy inference from color-image (로봇의 시각시스템을 위한 칼라영상에서 퍼지추론을 이용한 얼굴인식)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.106-110
    • /
    • 2014
  • This paper proposed the face recognition method which can be effectively applied to the robot's vision system. The proposed algorithm is recognition using hue extraction and feature point. hue extraction was using difference of skin color, pupil color, lips color. Features information were extraction from eye, nose and mouth using feature parameters of the difference between the feature point, distance ratio, angle, area. Feature parameters fuzzified data with the data generated by membership function, then evaluate the degree of similarity was the face recognition. The result of experiment are conducted with frontal color images of face as input images the received recognition rate of 96%.

Standardization of Inspection and Imaging of Facial Color, and Design of Gloss-detecting Method (면색정보취득 制御條件 표준화 및 윤택측정방안 설계)

  • Chi, Gyoo Yong;Kim, Jong Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.289-294
    • /
    • 2015
  • In order to make digital processing of facial color, standardization methods of photographing and observational requirements and gloss-detecting are done through preceding papers and actual experiences. Examiner's observational informations should be contained with original and temporary color, normalcy and deviation range and gloss. And these are interrelated with time, interior and exterior temperature, emotional state, so should be recorded too. Picturing procedure should be controlled in simple and practical but objective way. Just water cleansing, 15 to 20 minute resting, prohibiton of moisturizing of examinee are common for examiner. Temperature and moisture, width, light source requirement, brightness, polarizing filter of parlor and camera-to-object distance, posture of examinee are should be recorded. In addition, pre and post-revision of color and manifestation of color space after taking images are needed coping with construction of diagnostic database.

Comparison between the Color Properties of Whiteness Index and Yellowness Index on the CIELAB

  • Jung, Hyojin;Sato, Tetsuya
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.241-246
    • /
    • 2013
  • The color properties of a white or nearly colorless fabric are represented by whiteness index (WI) or yellowness index (YI). These two indexes relate to a white fabric's color quality. The purpose of this study was to identify the properties of WI and YI on the CIELAB through the simulations of estimation data for a systemization of color quality control. The results indicated that the relationship between WI and YI was a negative correlation, however the coefficients of correlation function between WI and YI were depended on hue. There were two hue transition points of the rate of changes in WI and YI. These hue transition points were the reference points to divide the hue contribution to WI and YI. These points were not the point of h=0 and h=180 and asymmetric. In addition, where the colors were same distance from the white point on the CIELAB, the rate of changes in WI and YI by ${\Delta}$Ew were depending on hue. Specifically, when WI decreased, YI of reddish and yellowish tinted colors decreased more than bluish tinted colors.

A Method of Color Image Segmentation Based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) Using Compactness of Superpixels and Texture Information (슈퍼픽셀의 밀집도 및 텍스처정보를 이용한 DBSCAN기반 칼라영상분할)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.89-97
    • /
    • 2015
  • In this paper, a method of color image segmentation based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) using compactness of superpixels and texture information is presented. The DBSCAN algorithm can generate clusters in large data sets by looking at the local density of data samples, using only two input parameters which called minimum number of data and distance of neighborhood data. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. Each superpixel is consist of pixels with similar features such as luminance, color, textures etc. Superpixels are more efficient than pixels in case of large scale image processing. In this paper, superpixels are generated by SLIC(simple linear iterative clustering) as known popular. Superpixel characteristics are described by compactness, uniformity, boundary precision and recall. The compactness is important features to depict superpixel characteristics. Each superpixel is represented by Lab color spaces, compactness and texture information. DBSCAN clustering method applied to these feature spaces to segment a color image. To evaluate the performance of the proposed method, computer simulation is carried out to several outdoor images. The experimental results show that the proposed algorithm can provide good segmentation results on various images.

Face region detection algorithm of natural-image (자연 영상에서 얼굴영역 검출 알고리즘)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.55-60
    • /
    • 2014
  • In this paper, we proposed a method for face region extraction by skin-color hue, saturation and facial feature extraction in natural images. The proposed algorithm is composed of lighting correction and face detection process. In the lighting correction step, performing correction function for a lighting change. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. Eye detection using C element in the CMY color model and mouth detection using Q element in the YIQ color model for extracted candidate areas. Face area detected based on human face knowledge for extracted candidate areas. When an experiment was conducted with 10 natural images of face as input images, the method showed a face detection rate of 100%.

The Brand Image Retrieval System Based on Color and Shape (컬러와 형태에 기반을 둔 상표 영상 검색 시스템)

  • Shin, Seong-Yoon;Pyo, Seong-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.167-172
    • /
    • 2006
  • An image retrieval system retrieves and offers same of similar image based on various features of image. This paper present a brand image retrieval system based on color and shape of image. We use the image for a color information by dividing into the area and extracting the area color distribution histogram. We use for the shape information by preprocessing of the boundary extraction, the centroid extraction, angular sampling etc. and calculating of the sum of the distance from the centroid to the boundary, the standard deviation, and the rate of long axis to short axis. We accomplish the retrieval through a similarity measurement by using the color and shape information which is extracted in this way.

  • PDF