• Title/Summary/Keyword: Collocation method

Search Result 180, Processing Time 0.023 seconds

Analysis of Propagating Crack Along Interface of Isotropic-Orthotropic Bimaterial by Photoelastic Experiment

  • Lee, K.H.;Shukla, A.;Parameswaran, V.;Chalivendra, V.;Hawong, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.102-107
    • /
    • 2001
  • Interfacial cracks between an isotropic and orthotropic material, subjected to static far field tensile loading are analyzed using the technique of photoelasticity. The fracture parameters are extracted from the full-field isochromatic data and the same are compared with that obtained using boundary collocation method. Dynamic Photoelasticity combined with high-speed digital photography is employed for capturing the isochromatics in the case of propagating interfacial cracks. The normalized stress intensity factors for static crack is greater when $\alpha=90^{\circ}C$ (fibers perpendicular to the interface) than when $\alpha=0^{\circ}C$ (fiber parallel to the interface) and those when $\alpha=90^{\circ}C$ are similar to ones of isotropic material. The dynamic stress intensity factors for interfacial propagating crack are greater when $\alpha=0^{\circ}C$ than $\alpha=90^{\circ}C$. The relationship between complex dynamic stress intensity factor $|K_D|$ and crack speed C is similar to that for isotropic homogeneous materials, the rate of increase of energy release rate G or $|K_D|$ with crack speed is not as drastic as that reported for homogeneous materials.

  • PDF

Study on the Fracture Deformation Characteristics in Rock by Hydraulic Fracturing (수압파쇄에 의한 암반 균열의 변형 특성 연구)

  • Sim, Young-Jong;Kim, Hong-Taek;Germanovich, Leonid N.
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.43-53
    • /
    • 2006
  • Hydraulic fracturing is an important and abundant process in both industrial applications and natural environments. The formation of hydraulic fractures includes nucleation, growth, and termination in numerous rock types and stress regimes, at scales ranging from microns to many kilometers. As a result, fracture segmentation, commonly observed at all scales and in all geo-materials, contributes to this complexity in many ways. In particular, the mechanical interaction of fracture segments strongly affect almost all hydraulic fracturing processes. In this paper, the segmented fracture opening deformation in rock by hydraulic fracturing is quantified using boundary collocation method and is compared with non-interacting single fracture.

  • PDF

Study of Stokes Flow Past a Vertical Plate in a Two-Dimensional Channel (2차원 채널 내의 수직 평판을 지나는 스톡스 유동에 대한 연구)

  • Yoon, Seok-Hyun;Jeong, Jae-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.609-615
    • /
    • 2011
  • A two-dimensional Stokes flow past a vertical plate in a channel is analyzed. The vertical plate is located at the center of the channel, and plane Poiseuille flow exists far upstream and downstream of the vertical plate. The Stokes approximation is used, and the flow is investigated analytically using the method of eigenfunction expansion and the point collocation method. From the analysis, the stream function and pressure distribution are obtained, and the pressure and shear stress distributions on the plate and channel wall are calculated. The additional pressure drop induced by the vertical plate and the force exerted on it are calculated as functions of the length of the vertical plate. For a typical length of the vertical plate, the streamline pattern and pressure distribution are shown. In addition, numerical analysis of laminar flow with a small Reynolds number is carried out to analyze the effect of a small Reynolds number on the flow pattern.

Natural Frequency of 2-Dimensional Heaving Circular Cylinder: Frequency-Domain Analysis (상하동요하는 2차원 원주의 고유진동수: 주파수 영역 해석)

  • Lee, Dong-Yeop;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • The concept of the natural frequency is useful for understanding the characters of oscillating systems. However, when a circular cylinder floating horizontally on the water surface is heaving, due to the hydrodynamic forces, the system is not governed by the equation like that of the harmonic one. In this paper, in order to shed some lights on the more correct use of the concept of the natural frequency, a problem of the heaving circular cylinder is analyzed in the frequency domain. Previously, it was thought that the theory of Ursell (1949) could not be used to get the added mass and wave-making damping for short waves, however, they were obtained by applying an accurate collocation method to the theory in this study. Using the so developed numerical method, we found the added mass and wave-making damping of the circular cylinder for the entire range of the frequency. Then, the MCFR(Modulus of Complex Frequency Response) was used to locate the frequency corresponding to the local maximum of MCFR and we define it as the natural frequency. Comparing our results with the previous investigation, we found that the pressure distribution on the cylinder gets close asymptotically to that of a cylinder in infinite fluid OR close to that of the cylinder, that the approximation of the natural frequency by Lee (2008) is different from our new value only by 0.64%, and that the approximation of the heaving system by an equivalent damped harmonic oscillation is not proper by the reason that is clearly shown from the comparison of the shape of the corresponding MCFRs.

Metagenome Analysis of Protein Domain Collocation within Cellulase Genes of Goat Rumen Microbes

  • Lim, SooYeon;Seo, Jaehyun;Choi, Hyunbong;Yoon, Duhak;Nam, Jungrye;Kim, Heebal;Cho, Seoae;Chang, Jongsoo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1144-1151
    • /
    • 2013
  • In this study, protein domains with cellulase activity in goat rumen microbes were investigated using metagenomic and bioinformatic analyses. After the complete genome of goat rumen microbes was obtained using a shotgun sequencing method, 217,892,109 pair reads were filtered, including only those with 70% identity, 100-bp matches, and thresholds below $E^{-10}$ using METAIDBA. These filtered contigs were assembled and annotated using blastN against the NCBI nucleotide database. As a result, a microbial community structure with 1431 species was analyzed, among which Prevotella ruminicola 23 bacteria and Butyrivibrio proteoclasticus B316 were the dominant groups. In parallel, 201 sequences related with cellulase activities (EC.3.2.1.4) were obtained through blast searches using the enzyme.dat file provided by the NCBI database. After translating the nucleotide sequence into a protein sequence using Interproscan, 28 protein domains with cellulase activity were identified using the HMMER package with threshold E values below $10^{-5}$. Cellulase activity protein domain profiling showed that the major protein domains such as lipase GDSL, cellulase, and Glyco hydro 10 were present in bacterial species with strong cellulase activities. Furthermore, correlation plots clearly displayed the strong positive correlation between some protein domain groups, which was indicative of microbial adaption in the goat rumen based on feeding habits. This is the first metagenomic analysis of cellulase activity protein domains using bioinformatics from the goat rumen.

Analysis of Facilitated Olefin Transport Through Polymer Electrolyte Membranes Containing Silver Salts (은염을 포함하는 고분자 전해질 막을 통한 올레핀 촉진수송의 해석)

  • Yong Soo Kang;Dongkyun Ko;Jong Hak Kim;Sung Taik Chung
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.239-245
    • /
    • 2003
  • The origin of large difference of selectivity of $C_3H_6$ over $C_3H_8$ between pure gas and mixed gas through silver polymer electrolyte membranes is investigated. Firstly, the effect of feed condition on the permeance of mixture gas ($C_3H_6/C_3H^8$) and the separation performance is examined. Upon decrease of the $C_3\;H_6$ concentration, the $C_3H_6$ permeance decreased whereas the permeance of $C_3H_8$ increased, resulting in the decrease of the selectivity of $C_3H_6/C_3H_8/.$ This result is ascribed to the $C_3H_6$-induced plasticization of membranes. Experimental results were validated by means of mathematical modeling, where pressure independent permeabilities were used.

Static and Dynamic Fracture Analysis for the Interface Crack of Isotropic-Orthotropic Bimaterial

  • Lee, Kwang-Ho;Arun Shukla;Venkitanarayanan Parameswaran;Vijaya Chalivendra;Hawong, Jae-Sug
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.165-174
    • /
    • 2002
  • In the present study, interfacial cracks between an isotropic and orthotropic material, subjected to static far field tensile loading are analyzed using the technique of photoelasticity. The fracture parameters are extracted from the full-field isochromatic data and the same are compared with that obtained using boundary collocation method. Dynamic photoelasticity combined with high-speed digital photography is employed for capturing the isochromatics in the case of propagating interfacial cracks. The normalized stress intensity factors for static cracks are greate. when ${\alpha}$: 90$^{\circ}$(fibers perpendicular to the interface) than when ${\alpha}$=0$^{\circ}$(fibers parallel to the interface), and those when ${\alpha}$=90$^{\circ}$are similar to ones of isotropic material. The dynamic stress intensity factors for interfacial propagating cracks are greater when ${\alpha}$=0$^{\circ}$ than ${\alpha}$=90$^{\circ}$. For the velocity ranges (0.1 < C/C$\sub$s1/<0.7) observed in this study, the complex dynamic stress intensity factor │K$\sub$D/│increases with crack speed c, however, the rate of increase of │K$\sub$D/│with crack speed is not as drastic as that reported for homogeneous materials.

The error character Revision System of the Korean using Semantic relationship of sentence component (문장 성분의 의미 관계를 이용한 한국어 오류 문자 교정 시스템)

  • Park, Hyun-Jae;Park, Hae-Sun;Kang, One-Il;Sohn, Young-Sun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.28-32
    • /
    • 2004
  • Till now, Korean spelling proofreading system has corrected words of a sentence from the relationship of a collocation or the grammatical information of the sentence. In this paper, we propose a system that corrects a word using the relationship among the sememes in a single sentence and substitutes an apt word for a word of the sentence that has the meaningful mistake by a mistyping. The proposed system makes several sentences that are able to communicate with each sememe. The substantives forms meaning tree according to the meaning of the word and the predicate of a sentence defines the meaningful relationship between a substantives of the subject and the object. After this system compares and analyzes the relationship of meaning, it corrects the mistyping of a word in a single sentence that includes an error. If the system finds out the semantic error by the mistyping, it applies the spelling proofreading method that proposed in this paper.

User Evaluation of Encountered Type Haptic System with Visual-Haptic Co-location (시각 - 촉각 일치된 마중형 햅틱 제시 시스템의 사용자 평가)

  • Cha, Baekdong;Bae, Yoosung;Choi, Wonil;Ryu, Jeha
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.13-20
    • /
    • 2019
  • For encountered haptic display systems among the virtual training systems for industrial safety, visual-haptic co-location is required for natural interaction between virtual and real objects. In this paper, we performed the user evaluation of the immersive VR haptic system which implement some level of visual-haptic co-location through a careful and accurate calibration method. The goal of the evaluation is to show that user performance (reaction time and distance accuracy) for both environments is not significantly different for certain tasks performed. The user evaluation results show statistically significant differences in reaction time but the absolute difference is less than 1 second. In the meantime, the distance accuracy shows no difference between the virtual and the actual environments. Therefore, it can be concluded that the developed haptic virtual training system can provide inexpensive industrial safety training in place of costly actual environment.

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF